Dynamics of a composite spacecraft with movable unit in three-axis gimbal

Dynamics, ballistics, movement control of flying vehicles


Alekseev A. V., Doroshin A. V.*, Yeromenko A. V.**, Krikunov M. M., Nedovesov M. O.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: doroshin@ssau.ru
**e-mail: huntergalaxy@bk.ru


The presented work is associated with modelling of angular motion of a variable configuration spacecraft caused by the presence of the additional movable rigid body inside the main carrier body fixed in the gimbal. The internal body is a movable unit of various functional purposes, such as antennae, telescope or operating component of a remote sensing system.

As a basis for considering a spacecraft in this problem, we can employ the model of double rotation of a spacecraft with movable longitudinal axis (on two transversal angles). In this case the presence of two additional degrees of freedom, allowing model the relative angular motion of the body-rotor relative to the carrier body, the mechanical structure of a spacecraft with double rotation is substantially enriched in the sense of functionality and dynamics.

The 3D relative motion of the internal body with respect to the main body of the spacecraft can be realized by means of a triaxial gimbal suspension. Then the considered mechanical system will have six degrees of freedom and allow ensure the necessary spatial orientation of the internal body, as well as fulfill the technical task of the spacecraft in its functional purpose.

For example, such mechanical systems and corresponding structural schemes can be employed for allocation of mobile equipment in a spacecraft, and orientating/redirecting/correcting its angular position by dint of internal drives fixed in the main body of a spacecraft.

As such equipment one can indicate, for example, massive manipulators, antennas, telescopes, movable nozzles of propulsion systems, structural elements of space tether systems, etc.

The mathematical model of angular motion of the considered system was obtained employing dynamical theorems and Lagrange’s formalism.

Equations of angular motion of a spacecraft with variable configuration without any constraints on relative rotation angles of the internal body/unit were obtained in this work. The authors performed numerical modeling of dynamics of movement without a spacecraft torque in case of internal control moments nonexistence.

The topicality of the work and its practical significance are characterized by the current intensification of the development of new modern platforms of nano-satellites, containing multifunctional mobile elements.


spacecraft, movement around the center of mass, dynamics of free movement, mobile device, gimbal


  1. Schiehlen W. Research trends in multibody system dynamics, Multibody System Dynamics, 2007, vol. 18, no. 1, pp. 3 –13.

  2. Wittenburg J. Dynamics of Systems of Rigid Bodies, Stuttgart, Teubner, 1977, 224 p.

  3. Wittenburg J. Beitrage zur dynamik von gyrostaten, Quaderno, Accademia Nazional dei Lincei, 1975, no. 227, pp. 1 – 187.

  4. Likins P.W. Spacecraft Attitude Dynamics and Control – A Personal Perspective on Early Developments, Journal Guidance Control Dynamic, 1986, vol. 9, no. 2, pp. 129 – 134.

  5. Beinum P.M., Fuksel P.Dzh., Mekison D.L. Dvizhenie i ustoichivost’ sputnika s dvoinym vrashcheniem, snabzhennogo dempferami nutatsii (Motion and stability of a satellite with double rotation, equipped with nutation dampers), Moscow, Mir, 1975, vol. 1, pp. 59 – 78.

  6. Anshakov G.P., Aslanov V.S., Balakin V.L., Doroshin A.V., Kvashin A.S., Kruglov G.E., Yudintsev V.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P Koroleva, 2003, no. 1, pp. 1 – 23.

  7. Aslanov V.S., Doroshin A.V. Kosmicheskie issledovaniya, 2002, vol. 40, no. 2, pp. 193 – 200.

  8. Aslanov V.S., Doroshin A.V. Izvestiya RAN. Mekhanika tverdogo tela, 2006, no. 4, pp. 42 – 55.

  9. Doroshin A.V., Heteroclinic chaos and its local suppression in attitude dynamics of an asymmetrical dual-spin spacecraft and gyrostat-satellites. The part I – main models and solutions, Communications in Nonlinear Science and Numerical Simulation, 2016, no. 31 (1-3), pp. 151 – 170.

  10. Aslanov V.S., Pikalov R.S. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76750

  11. Krikunov M.M. Trudy MAI, 2010, no. 41, available at: http://trudymai.ru/eng/published.php?ID=23801

  12. Arkhangel’skii Yu.A. Analiticheskaya dinamika tverdogo tela (Analytical dynamics of a rigid body), Moscow, Nauka, 1977, 328 p.

  13. Bukhgol’ts N.N. Osnovnoi kurs teoreticheskoi mekhaniki (Basic course of theoretical mechanics), Moscow, Nauka, 1966, 172 p.

  14. Anton V. Doroshin, Attitude Dynamics of Spacecraft with Control by Relocatable Internal Position of Mass Center, Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS 2017, Hong Kong, March 15-17, 2017, vol. 1, pp. 231 – 235.

  15. Cochran J.E., Shu P.H., Rew S.D. Attitude motion of asymmetric dual-spin spacecraft, Journal Guidance Control Dynamic, 1982, no. 5, pp. 37 – 42.

  16. Chinnery A.E., Hall C.D. Motion of a Rigid Body with an Attached Spring-Mass Damper, Journal Guidance Control Dynamic, 1995, vol. 18, no. 6, pp. 1404 – 1409.

  17. Or A.C. Dynamics of an Asymmetric Gyrostat, Journal of Guidance, Control Dynamics, 1998, vol. 21, no. 3, pp. 416 – 420.

  18. Sarychev V.A., Mirer S.A., Isakov A.V. Dual-spin satellites with gyro-damping, Acta Astronautica, 1981, vol. 9, no. 5, pp. 285 – 289.

  19. Kozlov V.V. Methods of Qualitative Analysis in the Dynamics of a Rigid Body, Moscow, 1980, Izd-vo Moskovskogo Universiteta, 231 p.

  20. Ivin E.A. Decomposition of variables in task about gyrostat motion, Vestnik MGU. Mathematics and Mechanics, 1985, no. 3, pp.69 – 72.


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI