Correlation-difference algorithm for aerial objects detection observed against non-uniform sky background

Optical and optical-electronic devices and complexes


Аuthors

Surovtsev P. Y.*, Suslin A. S.**

National Research University "MPEI", 14, Krasnokazarmennaya, Moscow, 111250, Russia

*e-mail: petr.surovtsev@gmail.com
**e-mail: isuslin.alexander@gmail.com

Abstract

The aircraft optoelectronic target detection systems employ algorithms based on brightness analysis. The target detection criterion is the of brightness threshold surpassing But there is a problem of false alarm caused by these algorithms due to the complex (e.g. cloudy sky) background.

This problem is solved applying the algorithms based on the frame subtracting called the difference algorithms. The criterion of target detection in this algorithm is the difference image with a non-zero signal. The difference algorithm can not be implemented in aircraft optoelectronic system without modification.

Thus, the goal of this work consists in developing an improved difference algorithm for the airborne optoelectronic system. The article proposes a correlation-difference detection algorithm. This algorithm allows apply difference algorithm for such airborne optoelectronic systems as FLIR.

The algorithm consists of two parts:

  1. Analysis of the inter-frame shift and its compensation (correlation algorithm);

  2. Subtract frames and target detection (difference algorithm).

In this work a semi-natural simulation of an airborne electro-optical target detection system against a complex background was performed. For the simulation FLIR with 50 Hz work frequency and 90 degrees field of view was used.

Thus, the algorithm allowed detect the target against the cloudy background and with displacement of the line of sight between the two frames in elevation of 45″ and azimuth of 31″.

In summary:

– The semi-natural simulation experiment revealed that the proposed correlation-difference algorithm can detect a target against cloudy background without false alarm;

– The proposed algorithm can be applied for optoelectronic system jitter compensation caused by vibrations of moving / stationary vehicle.

Keywords:

optical-electronic system, differential detection algorithm, correlation shift, air-born objects detection, complex target environment

References

  1. Lloid Dzh. Sistemy teplovideniya (Lloyd J.M. Thermal Imaging Systems), Moscow, Mir, 1978, 414 p.

  2. Miroshnikov M.M. Teoreticheskie osnovy optiko-elektronnykh priborov (Theoretical basis of optoelectronic devices), Leningrad, Mashinostroenie, 1983, 696 p.

  3. Accetta J.S., Shumaker D.L. The Infrared and Electro-Optical System Handbook, volume 4. Electro-Optical Systems Design, Analysis, and Testing, BelIingham, Washington: SPIE Optical Engineering Press, 1993, 361 p.

  4. Kriksunov L.Z. Spravochnik po osnovam IK-tekhniki (Handbook on infrared technology fundamentals), Moscow, Sovetskoe radio, 1978, 400 p.

  5. Babayan P.V., Fel'dman A.B. Tsifrovaya obrabotka signalov, 2010, no. 4, pp. 7 - 12.

  6. Yilmaz A., Shaque K., Shah M. Target tracking in airborne forward looking infrared imagery, Image Vision Computing, 2003, no. 21, pp. 623 - 635.

  7. Yakimenko I.V., Zhendarev M.V. Zhurnal Radioelektroniki, 2009, no. 2, available at: http://jre.cplire.ru/jre/feb09/1/text.pdf

  8. Alpatov B.A., Babayan P.V., Fel'dman A.B. Trudy Rossiiskogo nauchno-tekhnicheskogo obshchestva radiotekhniki, elektroniki i svyazi im. A.S. Popova “sifrovaya obrabotka signalov i ee primenenie” (Works of the Russian scientific and technical society of radioengineering, electronics and communication to A.S. Popova “Digital signal processing and its application”), Moscow, 2010, vol.1, pp. 117 - 120.

  9. Alpatov B.A., Babayan P.V., Balashov O.E., Stepashkin A.I. Metody avtomaticheskogo obnaruzheniya i soprovozhdeniya ob"ektov. Obrabotka izobrazhenii i upravlenie (Methods of objects automatic detection and tracking. Image processing and management), Moscow, Radiotekhnika, 2008, 176 p.

  10. Katulev A.N., Kolonskov A.A. Khramichev A.A., Yagol'nikov S.V. Opticheskii zhurnal, 2014, vol. 81, no. 2, pp. 29 - 39.

  11. Yakushenkov Yu.G. Teoriya i raschet optiko-elektronnykh priborov (Theory and calculation of optoelectronic devices), Moscow, LOGOS, 1999, 360 p.

  12. Vaniev A.A., Emel'yanov G.M. Komp'yuternaya optika, 2013, vol. 37, no. 4, pp. 477 - 483.

  13. Kochkin V.A. Nauka i Obrazovanie, 2014, no. 12, available at: http://engineering-science.ru/doc/749279.html

  14. Astapov Yu.M., Vasil'ev D.V., Zalozhnev Yu.I. Teoriya optiko-elektronnykh sledyashchikh system (Theory of optical-electronic tracking systems), Moscow, Nauka, 1988, 322 p.

  15. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow, Tekhnosfera, 2005, 1072 p.

  16. Prett U. Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow, Mir, 1982, 781 p.

  17. Bel'skii A.B., Choban V.M. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=40856

  18. Chochia P.A. Avtometriya, 2014, vol. 50, no. 6, pp. 97 - 110.

  19. Minchenkov M.V., Khel'vas A.V., Yurin D.V. Algoritm avtomaticheskoi segmentatsii izobrazhenii dlya sistem tekhnicheskogo zreniya. Sbornik: Obrabotka informatsii i modelirovanie (Algorithm for automatic image segmentation for technical vision systems. Collection: Information Processing and Modeling), Moscow, MFTI, 2002, pp. 66 - 80.

  20. Chochia P.A. Informatsionnye protsessy, 2010, vol. 10, no. 1, pp. 23 – 35.

  21. Belim S.V., Larionov S.B. Radiostroenie, 2017, no. 3, pp. 43 - 53.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход