Comparing various types of tracers in particle imaging velocimetry method

Optical and optical-electronic devices and complexes


Аuthors

Kolesnikov S. Y.*, Skornyakova N. M.**

National Research University "MPEI", 14, Krasnokazarmennaya, Moscow, 111250, Russia

*e-mail: 11ksu11@mail.ru
**e-mail: nmskorn@mail.ru

Abstract

The presented work is devoted to studying measurements dependence, obtained by the particle imaging velocimetry (PIV) on the type of the employed tracers. The PIV is used for velocity measuring in the selected stream 2D section or its 3D volume while hydro- or aerodynamic experiments.

The accuracy of the flow parameters determining depends on the reflective particles, serving as speed determining markers. Their images represent the reference points for particles migration computing. Certain requirements are imposed on markers: they should be rather large so that they could be distinguished on the image, and, at the same time, they should be small enough and light to follow a stream accurately.

Several types of the tracer particles are employed in PIV experiments. The experiment was performed with applying three types of tracers: polyamide particles, hollow glass spheres and aluminum particles. The stream under study was created by the laboratory chemical mixer rotation in a water volume to which the observing markers were added. The whirlwinds fields of speeds in liquid for a nozzle of the «cross» mixer type were built Velocity measurements were performed separately for each tracer type, and fields of displacement vectors were constructed for the same rotation mode of the mixer.

The results of the experiment were analyzed regarding compliance of fields of speeds to the data obtained in similar studies. Results of the work demonstrate that for this class of experiments the best results were obtained with polyamide particles.

Keywords:

particle image velocimetry, tracers, the vector field of speeds, polyamide particles, hollow glass spheres

References

  1. Adrian R.J. Twenty years of particle image velocimetry, Experiments in Fluids, 2005, no. 39 (2), pp. 159 – 169.

  2. Raffel M., Willert C., Wereley S., Kompenhans J. Particle image velocimetry: a practical guide, New York, Springer, 2007, 448 p.

  3. Adrian R.J., Westerweel J. Particle Image Velocimetry, Cambridge, UK, Cambridge University Press, 2010, 558 p.

  4. Zakharov D.L. Trudy MAI, 2011, no. 45, available at: http://trudymai.ru/eng/published.php?ID=25391

  5. Kostarev K.G., Batalov V.G., Mizev A.I., Sukhanovskii A.N., Shmyrov A.V. Vestnik Permskogo nauchnogo tsentra URO RAN, 2017, no. 1, pp. 52 – 56.

  6. Znamenskaya I., Glazyrin F., Koroteeva E., and Naumov D. PIV investigation of low-pressure pulse discharge flow, 10th Pacific Symposium on Flow Visualization and Image Processing (PSFVIP-10), University of Naples Federico II, Italy Naples, Italy, 2015. pp. 153-1 – 153-5.

  7. Markovich D.M., Abdurakipov S.S., Chikishev L.M., Dulin V.M., Hanjalic K. Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions, Physics of Fluids, 2014, vol. 26, no. 6, pp. 065109.

  8. Batalov V.G., Stepanov R.A., Sukhanovskii A.N. Trudy MAI, 2014, no. 76, available at: http://trudymai.ru/eng/published.php?ID=50074

  9. Orlov A.V., Brazhnikov M.Yu., Levchenko A.A. Pis’ma v zhurnal eksperimental’noi i teoreticheskoi fiziki, 2018, vol. 107, no. 3-4. pp. 166 – 171.

  10. Chikishev L.M., Dulin V.M., Lobasov A.S., Markovich D.M. Gorenie i vzryv, 2018, vol. 11, no. 2, pp. 31 – 39.

  11. Znamenskaya I.A., Glazyrin F.N., Doroshchenko I.A. et al. III otraslevaya konferentsiya po izmeritel’noi tekhnike i metrologii dlya issledovanii letatel’nykh apparatov, KIMILA – 2018. Sbornik trudov (Zhukovskii, 05-06 June 2018), Zhukovskii, Tsentral’nyi aerogidrodinamicheskii institut im. professora N.E. Zhukovskogo, 2018, pp. 292 – 301.

  12. Voitkov I.S., Kuznetsov G.V., Strizhak P.A. Pis’ma v zhurnal tekhnicheskoi fiziki, 2017, vol. 43, no. 6, pp. 48 – 55.

  13. Demauro E.P., Wagner J.L., Beresh S.J., Farias P.A. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV, Physical review fluids, 2017, vol. 2, no. 6, pp. 064301.

  14. Ragni D., Schrijer F., van Oudheusden B.W., Scarano F. Particle tracer response across shocks measured by PIV, Experiments in Fluids, 2011, vol. 50, no. 1, pp. 53 – 64.

  15. Legrand M., Nogueira J., Rodriguez P.A., Lecuona A., Jimenez R. Generation and droplet size distribution of tracer particles for PIV measurements in air, using propylene glycol/water solution, Experimental thermal and fluid science, 2017, no. 81, pp. 1 – 8.

  16. Cao L., Zhang B., Song X., XU C., Wang S. Reconstruction method of three-dimensional particle field based on focused light field imaging, Beijing Hangkong Hangtian Daxue Xuebao, 2017, vol. 42, no. 11, pp. 2322 — 2330.

  17. Margaris K.N., Black R.A., Nepiyushchikh Z., Zawieja D.C., Moore J. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels, Journal of biomedical optics, 2010, vol. 99, no. 1-2, pp. 325 — 332.

  18. Someya S., Ochi D., LI Y., Tominaga K., Ishii K., Okamoto K. Combined two-dimensional velocity and temperature measurements using a high-speed camera and luminescent particles, Applied physics b: lasers and optics, 2016, vol. 21, no. 2, pp. 025002.

  19. Melling A. Tracer particles and seeding for particle image velocimetry, Measurement science and technology, 1997, vol. 8, no. 12, pp. 1406 — 1416.

  20. Naumov I.V., Kabardin I.K., Okulov V.L., Mikel’son R.F. Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologii, 2013, no. 1 (12), pp. 289 — 295.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход