Technological approaches to zero offset compensation in MEMS gyroscopes being a part of the inertial measurement unit

Information and measuring and control systems


Krylov A. A.*, Korniyuk D. V.**

State Research Institute Engineeringpace University, 125, prospekt Mira, Moscow, 129226, Russia



The work describes one of the calibration algorithms for MEMS gyroscopes as part of a small-size IMU, and technological process of calibration data acquisition. The IMU consists of three mutually orthogonal angular velocity sensors and microcontroller. Microcontroller corrects the original data acquired from gyroscopes by compensation functions describing the known systematic errors with computed coefficients. The article declares physical specifics of zero offset origin. Resizing of silicon cells and electronic elements, which process data from capacitive sensors, induced by temperature variation, leads to the change of sensitive elements oscillations, and, as a result, to the deviation of original frequencies. The temperature change has also leads to the vacuum pressure change due getter properties variation. The article presents a method for zero offset dividing into components. The two main components are the initial offset and the temperature drift. The initial offset depends also on the environmental temperature, but it can be compensated by the initial calibration. It is shown that the drift behavior is correlated to the internal temperature rising. The article presents a review of the applicable zero drift compensation methods for micromechanical gyroscopes. Most of these methods do not account for the temperature variation. In this regard, a new algorithm of zero drift approximation is proposed. It contains piecewise linear functions with weights corresponding to temperature rising in segments. As another error, the zero drift has instability and, as a result, can be evaluated by systematic and stochastic components. Using several independent switch-on-switch-off cycles we can accumulate statistics and highlight systematic component by computing the arithmetic mean. The IMU can be calibrated by several temperature points in operating range. The article demonstrates case of algorithm working in random conditions (temperature point). The intermediate points values calculation is also performed in piecewise linear function. For automatiion purposes this method was realized programably with algorithm of automatic calibration points search. The algorithm is based on the drift function smoothing by low-frequency filtering. The filtered signal can be analyzed as a function with a number of the most noticeable inflections. These points can be found as pertaining to the most acute angle. The algorithm allows reducing the zero drift by 5-20 times compared to the values obtained without compensation. Compared to the polynomial approximation of the third and fourth power, the drift value for the piecewise linear approximation appeared to be 2-3 times less.


micromechanical gyroscopes, IMU calibration, zero drift, zero offset


  1. Vtorushin S.E., Arshinova A.A., Nesterenko T.G. Vestnik nauki Sibiri, 2014, no. 1(11), pp. 3 – 5.

  2. Korniyuk D.V., Krylov A.A.. Molodezh’ i budushchee aviatsii i kosmonavtiki. Tezisy dokladov. (Moscow, 14-18 November 2016), Moscow, Izd-vo MAI, 2016, pp. 315 – 317.

  3. Fontanella R., Accardo D., Caricati E., Cimmino S., De Simone D. An Extensive Analysis for the Use of Back Propagation Neural Networks to Perform the Calibration of MEMS Gyro Bias Thermal Drift, IEEE/ION Position, Location and Navigation Symposium (PLANS 2016), 11 – 14 April 2016, pp. 672 – 680.

  4. Popova I.V., Lestev A.M., Semenov A.A., Ivanov V.A., Rakityanskii O.I., Burtsev V.A. Giroskopiya i navigatsiya, 2008, no. 3(62), pp. 27 – 36.

  5. Evstaf’ev S.D., Rakityanskii O.I., Severov L.A., Semenov A.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2012, no. 7, pp. 167 – 172.

  6. Veremeenko K.K., Galai I.A. Trudy MAI, 2013, no. 63, available at:

  7. Krijnen B., Brouwer D.M., Abelmann L., Herder J.L. Vacuum behavior and control of a MEMS stage with integrated thermal displacement sensor, Sensors & Actuators: A. Physical, 2016, doi: 10.1016/j.sna.2015.09.005.

  8. E.J. Ng, Vu A. Hong, Y. Yang, C. Hyuck Ahn, Camille L.M. Everhart, and Thomas W. Kenny. Temperature Dependence of the Elastic Constants of Doped Silicon, Journal of microelectromechanical systems, June 2015, vol. 24, no. 3, pp. 730 – 741.

  9. Lysenko I.E. Giroskopiya i navigatsiya, 2006, no. 2 (53), pp. 91 – 92.

  10. Dzhashitov V.E., Pankratov V.M., Lestev A.M., Popova I.V. Mikrosistemnaya tekhnika, 2001, no. 3, pp. 2 – 10.

  11. Barulina M.A., Dzhashitov V.E. V konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem”. Sbornik trudov. (Sankt-Peterburg, 13 marta-30 oktyabrya 2003), Saint Petersburg, TsNII “Elektropribor”, 2003, pp. 71 – 79.

  12. Prikhodko I.P., Trusov A.A., Shkel A.M. Compensation of Drifts in High-Q MEMS Gyroscopes Using Temperature Self-Sensing, Sensors & Actuators: A. Physical, 2013, vol. 201, pp. 517 – 524.

  13. Gulmammadov F. Analysis, modeling and compensation of bias drift in MEMS inertial sensors, 4th International Conference on Recent Advances in Space Technologies, 2009, doi:10.1109/rast.2009.5158260

  14. Mishin A.Yu., Kiryushin E.Yu., Obukhov A.I., Gurlov D.V. Trudy MAI, 2013, no. 70, available at:

  15. J. Du, C. Gerdtman, M. Lindén. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review, Sensors, 2018, vol. 18, issue 4, pp. 1123, doi: 10.3390/s18041123

  16. Feng Y., Li X., Zhang X. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter, Sensors, 2015, vol. 15(5), pp. 11222 – 11238,

  17. Lomakin M.A. Inzhenernyi vestnik Dona, 2014, no. 2 (29), pp. 84.

  18. Pazychev D.B. Nauka i obrazovanie, 2011, no. 1, pp. 9 – 12.

  19. Shaimardanov I.Kh. XIII konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem”, Sbornik statei. Moscow, Izd-vo Internavigatsiya, 2011, 48 p.

  20. Yang H., Zhou B., Wang L., Xing H., Zhang R. A Novel Tri-Axial MEMS Gyroscope Calibration Method over a Full Temperature Range, Sensors, 2018, vol. 18 (9), pp. 3004,

Download — informational site MAI

Copyright © 2000-2019 by MAI