Analytical model for graphic images processing in the city life-support systems for objects damages detection

System analysis, control and data processing


Аuthors

Alekseev V. V.*, Lakomov D. V.**

Tambov State Technical University, 106, Sovetskaya, Tambov, 392000, Russia

*e-mail: vvalex1961@mail.ru
**e-mail: LaDenV@yandex.ru

Abstract

The article studies the possibility of application of the updated Canny algorithm supplemented with Robinson operator for images objects recognition and integrity violation detection of construction and housing and municipal services objects by an unmanned aerial vehicle in automated mode. It also describes Gauss filter application for the image blur, as well as special cases of boundary conditions for image pixels. The impact of the standard deviation value when blurring images on the image itself is demonstrated. The article describes a mathematical model of image analysis, based on the Robinson operator, and other applicable mathematical operators for embedding gradient values in image pixels. The Robinson operator, by convolution of the original image in four directions, allows more accurate search for the contour, compared to the other operators (Roberts, Sobel, Pruitt, Gauss, Laplace), which use only two directions of convolution. The results of this method studies while processing images of various objects of housing and communal services in the IR range are presented. Typical images of various objects in the infrared range were taken: transformer substations, electrical cables and sockets, heating pipes, heating mains, factory pipe, heat pipe, distribution panel, communication lines, a general picture of the city from the drone. Inferences were drawn the advantages and disadvantages of this analytical model, as well as the features of this model while the analysis of both clear and blurred images and the main obstacles in the images analysis. Based on this study, recommendations on the algorithm parameters selection are given. The conclusions made in this article can be employed in technical vision systems, as well as in decision support systems used to identify the damage to the analyzed objects in the field of urban planning and housing and communal services, as well as in other areas (Geology, agriculture and many others).

Keywords:

recognition, image, image, contour algorithm, Canny, operator, Robinson, uncertainty

References

  1. Alekseev V.V., Ivanova O.G., Lakomov D.V. XVI Mezhdunarodnaya konferentsiya “Informatika: problemy, metodologiya, tekhnologii”. Sbornik trudov. (Voronezh, 11-12 February 2016), Voronezh, Izd-vo Nauchno-tekhnicheskie publikatsii, 2016, pp. 42 – 45.

  2. Mestetskii L.M. Matematicheskie metody raspoznavaniya obrazov (Mathematical methods for patterns recognition), Moscow, MGU, 2004, 144 p.

  3. Didrikh V.E., Madron’ero P.R. XIII Mezhdunarodnaya nauchno-metodicheskaya konferentsiya “Informatika: problemy, metodologiya, tekhnologii”. Sbornik trudov. (Voronezh, 7–8 February 2013), Voronezh, Voronezhskii gosudarstvennyi universitet, 2013, vol. 2, pp. 290 – 293.

  4. Alekseev V.V., Gromov Yu.Yu., Gubskov Yu.A., Ishchuk I.N. Metodologiya distantsionnoi otsenki prostranstvennykh raspredelenii optiko-teplofizicheskikh parametrov ob''ektov, zamaskirovannykh pod poverkhnost’yu grunta (Methodology for remote assessment of objects’ optical-thermal parameters spatial distributions disguised under the surface), Moscow, Nauchtekhlitizdat, 2014, 248 p.

  5. Karasev P.I., Gubskov Yu.A. Vestnik Voronezhskogo instituta FSIN Rossii, 2015, no. 2. pp. 35 – 37.

  6. Kim N.V., Kuznetsov A.G., Krylov I.G. Vestnik Moskovskogo aviatsionnogo institute, 2010, vol. 17, no. 3, pp. 42 – 49.

  7. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow, Tekhnosfera, 2005, 1072 p.

  8. Pyt’ev Yu.P. Metody morfologicheskogo analiza izobrazhenii (Methods of morphological image analysis), Moscow, FIZMATLIT, 2010, 336 p.

  9. Potapov A.A. Noveishie metody obrabotki izobrazhenii (The latest image processing methods), Moscow, FIZMATLIT, 2008. 494 p.

  10. Sakovich I.O., Belov Yu.S. Inzhenernyi zhurnal: Nauka i innovatsii, 2014, no. 12, pp. 21 – 25.

  11. Furman Ya.A. Vvedenie v konturnyi analiz. Prilozheniya k obrabotke izobrazhenii i signalov (Introduction to contour analysis. Applications to image and signal processing), Moscow, FIZMATLIT, 2003, 592 p.

  12. Kravchenko V.F. Tsifrovaya obrabotka signalov i izobrazhenii v radiofizicheskikh prilozheniyakh (Digital signal and image processing in radiophysical applications), Moscow, FIZMATLIT, 2007, 553 p.

  13. John Canny. A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, vol. PAMI-8(6), pp. 679 – 698.

  14. Kim N.V., Krylov I.G. Trudy MAI, 2012, no. 62, available at: http://trudymai.ru/eng/published.php?ID=35507

  15. Alekseev V.V., Karasev P.I., Lakomov D.V. XVI Mezhdunarodnaya konferentsiya “Informatika: problemy, metodologiya, tekhnologii”. Sbornik trudov. (Voronezh, 11-12 February 2016), Voronezh, Izd-vo Nauchno-tekhnicheskie publikatsii, 2016, pp. 37 – 41.

  16. Alekseev V.V., Lakomov D.V. III Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Virtual’noe modelirovanie, prototipirovanie i promyshlennyi dizain”. Tezisy dokladov. (Tambov, 15-17 November 2016), Tambov, TGTU, 2016, vol.2, pp. 138 – 141.

  17. Alekseev V.V., Lakomov D.V. XV Vserossiiskaya nauchnaya konferentsiya “Neirokomp’yutery i ikh primenenie”. Tezisy dokladov. (Moscow, 14 March 2017), Moscow, GPPU, 2017, pp. 89 – 90.

  18. Gruzman I.S., Kirichuk V.S. et al. Tsifrovaya obrabotka izobrazhenii v informatsionnykh sistemakh (Digital image processing in information systems), Novosibirsk, Izd-vo NGTU, 2002, 352 p.

  19. Kovrigin A.V. Nauchnyi zhurnal KubGAU, 2007, № 29 (5), available at: http://ej.kubagro.ru/2007/05/pdf/03.pdf

  20. Smirnov A.V., Peskin A.E. Tsifrovoe televidenie: ot teorii k praktike (Digital television: from theory to practice), Moscow, Goryachaya liniya – Telekom, 2005, 349 p

  21. Dzhakoniya V.E., Gogol’ A.A., Druzin Ya.V. et al. Televidenie (Television), Moscow, Goryachaya liniya -Telekom, 2004, 228 p.

  22. Bykov R.E., Fraier R., Ivanov K.V., Mantsvetov A.A. Tsifrovoe preobrazovanie izobrazhenii (Digital image conversion), Moscow, Goryachaya liniya – Telekom, 2003, 229 p.

  23. Muthukrishnan R., Radha M. Edge Detection Techniques for Image Segmentation, International Journal of Computer Science & Information Technology (IJCSIT), 2012, no. 3(6), pp. 259 – 267.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход