Studying stiffened shells stress state by the refined theory with account for ribs elasticity and clamped edge

Dynamics, strength of machines, instruments and equipment


Аuthors

Firsanov V. V.1*, Vo A. H.1**, Tran N. D.2***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Le Quy Don Technical University, 236, Hoang Quoc Viet, Ha Noi, Viet Nam

*e-mail: k906@mai.ru
**e-mail: anhhieu1512@gmail.com
***e-mail: ngocdoanmai@gmail.com

Abstract

The presented article considers the clamped edge pliability and ribs stiffness impact on the stress state of stiffened shells determined by the refined theory.

Computing was performed according to the approach based on the shell displacement expanding into polynomials, one degree higher than the classical theory of Kirchhoff-Love type, over the coordinate normal to the median surface. Differential equation of equilibrium and boundary conditions of the shell were obtained based on the 3D theory of elasticity and Lagrange variation principle. The formulated boundary problem was solved by an analytical method using the Laplace transform.

The calculation results revealed quickly damping additional stress states of the “boundary layer” type while calculations were performed by the refined theory. The values of longitudinal and circumferential shell stresses are substantially refined nearby the stress state distortion zones (in places of ribs fixing and clamped edge), while normal stresses values are of the same order with maximum values of the main (internal) stress.

The study revealed that the shell stresses reduced several times with account for the clamped edge pliability. An important result related to the additional stress state consists in the fact that with the ribs stiffness increases, the transverse normal stresses, neglected in the classical theory, increase substantially. The obtained results can be applied for the design and evaluation of the strength of aircraft stiffened shells.

Keywords:

stiffened shells, refined theory, stress state “boundary layer”, Lagrange principle, transverse normal stresses, rib stiffness, clamped edge pliability, elastic half-space

References

  1. Zhilin P.A. K analizu kraevykh zadach dlya rebristykh obolochek. Prochnost’ gidroturbin. Trudy TsKTI № 72 (On boundary problems analysis for ribbed shells. Hydro turbines strength), Leningrad, Izd-vo TsKTI, 1966, pp. 26 — 40.

  2. Zhilin P.A. Obshchaya teoriya rebristykh obolochek. Prochnost’ gidroturbin. Trudy TsKTI № 88 (General theory of ribbed shells. Hydro turbines strength), Leningrad, Izd-vo TsKTI, 1968, pp. 46  70
  3. Zhilin P.A. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1970, no. 4, pp. 150 — 162.

  4. Lazaryan V.A., Konashenko S.I. Obobshchennye funktsii v zadachakh mekhaniki (Generalized functions in problems of mechanics), Kiev, Naukova dumka, 1974, 192 p.

  5. Yang B., Zhou J. Analysis of ring-stiffened cylindrical shells, Journal of Applied Mechanics, 1995, vol. 62, pp. 1005 — 1014.

  6. Swaddiwudhipohg S., Tian J., Wang C.M. Elastic buckling analysis of ring-stiffened cylindrical shell under general pressure loading via Ritz method, Thin walled structures, 1999, vol. 35, pp. 1 — 24.

  7. Amiro I.Ya., Zarutskii V.A. Metody rascheta obolochek. Tom 2. Teoriya rebristykh obolochek (Methods for shells calculating. Volume 2. Ribbed shells theory), Kiev, Naukova Dumka, 1980, 368 p.

  8. Novozhilov V.V., Chernykh K.F., Mikhailovskii E.I. Lineinaya teoriya tonkikh obolochek (Linear theory of thin shells), Leningrad, Politekhnika, 1991, 656 p.

  9. Zhgutov V.M. Inzhenerno-stroitel’nyi zhurnal, 2009, no. 6 (8), pp. 16 — 24.

  10. Kushnarenko I.V. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2014, no. 2, pp. 57 — 62.

  11. Ovcharov A.A., Brylev I.S. Sovremennye problemy nauki i obrazovaniya, 2014, no. 3, pp. 63 — 71.

  12. Semenov A.A., Ovcharov A.A. Inzhenernyi vestnik Dona, 2014, vol. 29, no. 2, pp. 74 — 77.

  13. Semenov A.A. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2014, no. 1, pp. 49 — 63.

  14. Dudchenko A.A., Sergeev V.N. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, 2017, no. 2, pp. 78 — 98.

  15. Karpov V.V., Ignat’ev O.V., Semenov A.A. Inzhenerno-stroitel’nyi zhurnal, 2017, no. 6 (74), pp. 147 — 160.

  16. Karpov V.V. Models of the shells having ribs, reinforcement plates and cutouts, International Journal of Solids and Structures, 2018, no. 146, pp. 117 — 135.

  17. Gol’denveizer A.L. Teoriya uprugikh tonkikh obolochek (Theory of elastic thin shells), Moscow, Nauka, 1976, 512 p.

  18. Firsanov V.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2002, vol. 8, no. 1, pp. 28 — 64.

  19. Zveryaev E.M. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53459

  20. Zveryaev E.M., Olekhova L.V. Trudy MAI, 2015, no. 79, available at: http://trudymai.ru/eng/published.php?ID=55762

  21. Vasil’ev V.V., Lur’e S.A. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1990, no. 6, pp. 139 — 146.

  22. Firsanov V.V., Doan C.N. Energy-consistent theory of cylindrical shells, Journal of Machinery Manufacture and Reliability, 2011, vol. 40, no. 6, pp. 543 — 548.

  23. Firsanov V.V. The Stressed State of the «Boundary Layer» Type in Cylindrical Shells Investigated according to a Nonclassical Theory. Journal of Machinery Manufacture and Reliability, 2018, no. 47 (3), pp. 241 — 248.

  24. Firsanov V.V., Vo A.Kh. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98866

  25. Firsanov V.V., Zoan K.Kh. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100589

  26. Obraztsov I.F., Savel’ev L.M., Khazanov Kh.S. Metod konechnykh elementov v zadachakh stroitel’noi mekhaniki letatel’nykh apparatov (The finite element method in problems of aircraft structural mechanics), Moscow, Vysshaya shkola, 1985, 392 p.

  27. Aleksandrov A.V., Potapov V.D. Osnovy teorii uprugosti i plastichnosti (Fundamentals of elasticity and plasticity theory), Moscow, Vysshaya shkola, 1990, 400 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход