Method and algorithms of inter-channeled gradient reconstruction of multi-spectral images in optical-electronic complexes of air and space reconnaissance

System analysis, control and data processing


Аuthors

Shipko V. V.

MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia

e-mail: shipko.v@bk.ru

Abstract

The goal of the work consists in improving the accuracy of multispectral digital images reconstructing distorted by applicative interference due to the inter-channel redundancy property of multi-channel optic-electronic complexes of air and space reconnaissance.

The author proposed and studied a new method and algorithms for inter-channel gradient reconstruction of the information component of multispectral images distorted by the impulse and spatially extended applicative interference, based on the implementation of the inter-channel redundancy property.

The proposed method is based on the assumption of the approximate equality of gradients of the adjacent channels of multispectral images. The method consists of the two stages.

At the first stage, the spatial position of the interference in each component is estimated. For these purposes, an algorithm for inter-channel gradient detection of interference in each spectral channel based on a new principle of the inter-channel discrepancy between the gradients of individual spectral channels of a multispectral image, has been developed. At the second stage, an inter-channel gradient reconstruction of the spectral channels of the multispectral image is performed in the distorted sections according to one of the developed algorithms, based on the borrowing information on the gradients of the corresponding sections of undistorted channels.

As the results of the numerical and experimental studies demonstrated, the proposed method allows obtaining a higher detection and reconstruction accuracy of distorted image areas in comparison with existing processing methods. In this case, the computational costs of the developed algorithms allow processing color (3-channel) images in a time scale close to the real one.

Keywords:

color digital images, multispectral images, applicative interference, impulse noise, inter-channel gradient reconstruction, median filtering

References

  1. Tarasov V.V., Yakushenkov Yu.G. Dvukh- i mnogo diapazonnye optiko-elektronnye sistemy s matrichnymi priemnikami izlucheniya (Two – and multi-band optical-electronic systems with matrix detectors), Moscow, Universitetskaya kniga, Logos, 2007, 192 p.

  2. Dvorkin B.A., Dudkin S.A. Geomatika, 2013, no. 2, pp. 16 – 36.

  3. Bel’skii A.B., Choban V.M. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=40856

  4. Lukin V. Processing of multichannel RS data for environment monitoring, Proc. of NATO Advanced Research Workshop on Geographical Information Processing and Visual Analytics for Environmental Security. Trento, (Italy), Springer Netherlands, July 2009, pp. 129 – 138.

  5. Barabin G.V., Gusev V.Yu. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/published.php?ID=46740

  6. Kazbekov B.V. Trudy MAI, 2013, no. 65, available at: http://trudymai.ru/published.php?ID=35912

  7. Koziratskii Yu.L., Yukhno P.M. Radiotekhnika, 2000, no. 10, pp. 52 – 59.

  8. Kalinin P.V., Sirota A.A. Tsifrovaya obrabotka signalov, 2013, no. 1, pp. 28 – 33.

  9. Shipko V.V. Vestnik voenno-vozdushnoi akademii, 2014, no. 2 (21), pp. 181 – 185.

  10. Asanov S.V., Egorov S.M., Ignat’ev A.B., Morozov V.V., Rezunkov Yu.A., Stepanov V.V. Opticheskii zhurnal, 2014, vol. 1, no. 9, pp. 62 – 68.

  11. Stafeev V.I., Burlakov I.D., Bontar’ K.O., Akimov V.M., Klimanov E.A., Saginov L.D. Materialy elektronnoi tekhniki, 2007, no. 2, pp. 31 – 34.

  12. Voskoboinikov Yu.E., Belyavtsev V.G. Avtometriya, 1999, no. 5, pp. 97 – 105.

  13. Mozheiko V.I., Fisenko V.T., Fisenko T.Yu. Izvestiya Vuzov. Priborostroenie, 2009, vol. 52, no. 8, pp. 30 – 37.

  14. Samoilin E.A., Shipko V.V. Avtometriya, 2014, vol. 50, no. 2, pp. 22 – 30.

  15. Samoilin E.A., Shipko V.V. Avtometriya, 2014, vol. 50, no. 4, pp. 59 – 66.

  16. Samoilin E.A., Shipko V.V. Opticheskii zhurnal, 2013, vol. 80, no. 10, pp. 53.

  17. Samoilin E.A., Shipko V.V. Opticheskii zhurnal, 2014, vol. 81, no. 4, pp. 54 – 60.

  18. Samoilin E.A., Shipko V.V. Tsifrovaya obrabotka signalov, 2013, no. 3, pp. 13 – 16.

  19. Samoilin E.A., Shipko V.V. Tsifrovaya obrabotka signalov, 2014, no. 3, pp 13 – 16.

  20. Samoilin E.A. Opticheskii zhurnal, 2006, vol. 73, no. 12, pp. 42 – 46.

  21. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow, Tekhnosfera, 2005, 1072 p.

  22. Samoilin E.A., Shipko V.V., Trifonov P.A. Materialy XIX Mezhdunarodnoi nauchnoi konferentsii “Radiolokatsiya navigatsiya svyaz’ ”, Voronezh, Izd-vo SAKVOEE, 2013, vol. 1, pp. 182 – 189.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход