Methodology of random processes high-precision filtering in stochastic dynamic systems with fixed structure. (Part 1)

System analysis, control and data processing


Аuthors

Kosachev I. M.1*, Chugai K. N.2**, Rybackov K. A.3***

1. Military Academy of the Republic of Belarus, 220, prospekt Nezavisimosti, Minsk, 220057, Belarus'
2. Scientific Research Institute of the Armed Forces, 4/3, str. Slavinsky, Minsk, 220103, Belarus
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kosachev1301@mail.ru
**e-mail: konstantin.ch40@gmail.com
***e-mail: rkoffice@mail.ru

Abstract

The article presents a methodical approach to high-precision nonlinear filtering of multidimensional non-Gaussian random processes in continuous-time stochastic dynamical systems with a fixed structure. The high accuracy of the developed algorithms for the optimal nonlinear filtering problem is stipulated by application of a posteriori higher order central moments of the filtered process. The adaptability of the developed high-precision nonlinear filtering algorithms is ensured by computing in real time a posteriori skewness and excess kurtosis for all phase coordinates of the filtered random process. Further, they are compared with the threshold values corresponding to the Gauss random process, and, if necessary, accounting for by iteration way filtering algorithms of a posteriori higher central moments of the filtered process.

The methodology under consideration for high-precision nonlinear filtering of multidimensional non-Gaussian random processes may be employed for eight basic options of filtering problems. Though engineering algorithms are presented only for the problem of filtering with adaptive noises in mathematical model of the stochastic dynamic system.

The methodical approach to high-precision nonlinear filtering of multidimensional non-Gaussian random processes can be used for eight basic variants of filtering problems, but engineering algorithms are given only for the filtering problem with additive noises in the mathematical model of the stochastic dynamical system.

The first part of the article describes three stages of the proposed methodical approach:

  1. Obtaining universal stochastic integro-differential equations for a posteriori arbitrary order central moments of the filtered process.

  2. Obtaining stochastic integro-differential equations for a posteriori the required order central moments based on the given mathematical model of the stochastic dynamical system.

  3. Obtaining stochastic differential equations for a posteriori central moments of the required order by expansion of averaging in corresponding stochastic integro-differential equations by the non-linearities statistical approximation method.

Other stages of the proposed technique will be described in the second part of the article.

Keywords:

high-precision filtering, random process, dynamical system, stochastic system, fixed structure

References

  1. Kolesnikov A.A. Sovremennaya i prikladnaya teoriya upravleniya: Optimizatsionnyi podkhod k teorii upravleniya (Modern and Applied Control Theory: Optimization Approach to Control Theory), Taganrog, Izd-vo TRTU, 2000, vol. 1 - 407 p., vol. 2 - 558 p., vol. 3 - 653 p.

  2. Egupov N.D. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya (Methods of Classical and Modern Theory of Automatic Control), Moscow, MGTU im. N.E. Baumana, 2004, vol. 1 – 656 p., vol. 2 - 640 p., vol. 3 – 616 p., vol. 4 - 744 p., vol. 5 - 784 p.

  3. Kazakov I.E., Gladkov D.I. Metody optimizatsii stokhasticheskikh system (Optimization Methods for Stochastic Systems), Moscow, Nauka, 1987, 304 p.

  4. Pugachev V.S., Sinitsyn I.N. Stochastic Systems: Theory and Applications, World Scientific, 2002, 928 p.

  5. Stratonovich R.L. Conditional Markov Processes and Their Application to the Theory of Optimal Control, Elsevier, 1968, 368 p.

  6. Sinitsyn I.N. Fil'try Kalmana i Pugacheva (Kalman and Pugachev Filters), Moscow, Logos, 2007, 776 p.

  7. Kalman R.E., Falb P.L., Arbib M.A. Topics in Mathematical System Theory, McGraw-Hill Education, 1969, 358 p.

  8. Leont'ev N.E. Osnovy teorii fil'tratsii (Fundamentals of Filtering Theory), Moscow, Moscow, MGU, 2009, 88 p.

  9. Gel'fand A.M., Khmel'nik S.I. Tsifrovaya fil'tratsiya mnogomernykh vzaimozavisimykh protsessov (Digital Filtering of Multidimensional Interdependent Processes), Moscow, Del'fin-informatika, 2008, 148 p.

  10. Shirman Ya.D. Radioelektronnye sistemy: osnovy postroeniya i teoriya (Radioelectronic Systems. Fundamentals of structuring and theory), Moscow, Radiotekhnika, 2007, 512 p.

  11. Sosulin Yu.G. Teoreticheskie osnovy radiolokatsii i radionavigatsii (Theoretical Basics of Radar and Radio Navigation), Moscow, Radio i svyaz', 1992, 304 p.

  12. Panteleev A.V., Rudenko E.A., Bortakovskii A.S. Nelineinye sistemy upravleniya: opisanie, analiz i sintez (Nonlinear Control Systems: Description, Analysis and Synthesis), Moscow, Vuzovskaya kniga, 2008, 312 p.

  13. Bukhalev V.A., Boldinov V.A. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87283

  14. Kolosovskaya T.P. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70666

  15. Sychev M.I. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74830

  16. Sychev M.I., Fesenko S.V. Trudy MAI, 2015, no. 83, available at: http://trudymai.ru/eng/published.php?ID=62280

  17. Dashevskii M.L. Avtomatika i telemekhanika, 1967, no. 11, pp. 62 -81.

  18. Dashevskii M.L. Problemy upravleniya i teoriya informatsii, 1975, no. 4, pp. 317 - 328.

  19. Kashkarova A.G., Shin V.I. Avtomatika i telemekhanika, 1986, no. 2, pp. 69 - 79.

  20. Malakhov A.N. Kumulyantnyi analiz negaussovykh sluchainykh protsessov i ikh preobrazovaniya (Cumulative Analysis of Non-Gaussian Random Processes and Their Transformations), Moscow, Sovetskoe radio, 1978, 376 p.

  21. Sokolov S.V. Izvestiya vuzov. Radioelektronika, 1991, no. 5, pp. 8 - 11.

  22. Rybakov K.A. Nauchnyi vestnik MGTU GA, 2016, no. 224 (2), pp. 14 - 23.

  23. Leondes K.T. Fil'tratsiya i stokhasticheskoe upravlenie v dinamicheskikh sistemakh (Filtering and Stochastic Control in Dynamic Systems),. – M.: Nauka, 1980. – 408 s.

  24. Tikhonov V.I. Statisticheskaya radiotekhnika. – M.: Ripol klassik, 2013. – 684 s.

  25. Kosachev I.M., Eroshenkov M.G. Analiticheskoe modelirovanie stokhasticheskikh system (Analytical Modeling of Stochastic Systems), Minsk, Nauka i tekhnika, 1993, 264 p.

  26. Kosachev I.M. Vestnik Voennoi akademii Respubliki Belarus', 2014, no. 4 (45), pp. 125 - 161.

  27. Kostrikin A.I. Introduction to Algebra, Springer-Verlag, 1982, 577 p.

  28. Borevich Z.I., Shafarevich I.R. Number Theory, Academic Press, 1966, 445 p.

  29. Bakhvalov N.S., Kornev A.A., Chizhonkov E.V. Chislennye metody. Reshenie zadach i uprazhneniya (Numerical Methods. Problem Solving and Exercises), Moscow, Laboratoriya znanii, 2016, 352 p.

  30. Gatelyuk O.V., Ismailov Sh.K., Manyukova N.V. Chislennye metody (Numerical Methods), Moscow, Yurait, 2019, 140 p.

  31. Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers, Dover Publ., 2000, 1152 p.

  32. Mal'chikov S.V. Avtomatika i telemekhanika, 1973, no. 10, pp. 33 - 38.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход