A device for space particles parameters measuring and evaluating their impact on the satellite-building materials

Computing and control systems elements and units


Baranov N. A.*, Taipova D. R.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: milvich36@gmail.com
**e-mail: nil54@list.ru


The article describes the effect of small fractional space debris on satellite-building materials that are most vulnerable to the impact of dust particles, such as various optical products materials (portholes, protective glasses, lenses, mirrors, solar batteries, thermal control coatings and electrovacuum insulation).

Collision with particles of the centimeter-sized space debris is fatal for a satellite, and the space stations may be damaged. A head-on collision with millimeter-sized particles will cause the satellite or station equipment failure or destroy it. The smaller particles are cannot inflict significant damage to satellite equipment, but may lead to degradation of the fragile parts.

The article proposes the design and principle of operation of a flat panel cosmic dust detector. This device makes allows perform complex spatial registration of the impact of meteoroid and technological particles on the spacecraft. The basis of the device design is a body made of nanocomposite material or beryllium aluminum alloy with mechanically fixed cells containing the following materials: a piezo-active polarized PVDF film, a thin-film capacitor sensor, a phosphor, various satellite-building materials, and an aerogel layer for trapping and further post-flight study of fractional space debris. The detector registers and measures parameters of impacts based on several physical phenomena, such as an MDM structure breakdown consisting of a dielectric layer and metal conductive layers deposited on it, phosphor glow and a signal from the piezosensor. The design being described includes special target inserts from vulnerable satellite building materials to control the degree of their degradation under the impact of a dust particles stream.


detector, near-earth space control, spacecraft elements protection, space debris, fine particle sensor, thin-film capacitor, film piezo-sensor, phosphor, aerogel


  1. Baranov N.A., Skvortsov B.V., Taipova D.R. Aviakosmicheskoe priborostroenie, 2018, no. 8, pp. 35 - 45.

  2. Usovik I.V., Darnopykh V.V., Malyshev V.V. Aerospace MAI Journal, 2015, no. 3 (22), pp. 54 - 62.

  3. Nikolaevskii V.I. Vysokoskorostnye udarnye yavleniya (High-speed shock phenomena) Moscow, Mir, 1973, 561 p.

  4. Semkin N.D. Diskretnye i tsifrovye metody v radiotekhnicheskikh ustroistvakh i sistemakh: Mezhvuzovskii sbornik nauchnykh trudov, Kuibyshev, Kuibysh. avits. in-t, 1990, . 87 - 92.

  5. Balakin V.L. Belokonov N.D., Semkin I.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2001, no. 1 (3), pp. 156 - 161.

  6. Tsou P. Silica Aerogel captures cosmic dust intact, Journal of Non-Crystalline Solids, 1995, vol. 186, pp. 415 – 427.

  7. Jones S.M., Sakamoto J. Applications of aerogels in space exploration. Aerogel Handbook, 2010, no. 32, pp. 721 – 746, available: https://link.springer.com/chapter/10.1007/978-1-4419-7589-8_32

  8. Burchell M.J., Creighton J.A., Cole M.J., Mann J., Kearsley A.T. Capture of particles in hypervelocity impacts in aerogel, Meteoritics and Planetary Science, 2001, no. 2 (36), pp. 209 – 221.

  9. Woignier T., Duffours L., Colombel P., Durin C. Aerogels Materials as Space Debris Collectors, Advances in Materials Science and Engineering, 2013, vol. 2013, pp. 1 - 6.

  10. H.E. La Gow, L. Secretan. The micrometeorite penetration experiment // NASA Technical, 1961, vol. 1, 263 - 272.

  11. Stardust – NASA’s comet sample return mission. Jet Propulsion Laboratory, California Institute of Technology, 2011, available at: https://stardust.jpl.nasa.gov/news/status/060207.html

  12. Semkin N.D., Voronov K.E., Novikov L.S. Registratsiya pylevykh i gazovykh chastits v laboratornykh i kosmicheskikh usloviyakh (Dust and gas particles registration in laboratory and space conditions), Samara, SGAU, 2005, 467 p.

  13. Semkin N.D., Telegin A.M. Kosmicheskaya pyl' i ee vzaimodeistvie s kosmicheskimi apparatami (Space dust and its interaction with a spacecraft), Samara, SGAU, 2015, 124 p.

  14. Semkin N.D. Voronov K.E., Novikov L.S., Bogoyavlenskii N.L. Pribory i tekhnika eksperimenta, 2005, no. 2, pp. 123 - 129.

  15. Gilardi G., Kawamoto S., Kibe S. Capture of a Non-Cooperative Object Using a Two-Arm Manipulator, 55th International Astronautical Congress, 2004, Vancouver, Canada. DOI: 10.2514/6.IAC-04-A.5.06

  16. Benvenuto R., Lavagna M. Flexible Capture Devices for Medium To Large Debris Active Removal: Simulations Results To Drive Experiments, 12th Symposium on Advanced Space Technologies in Automation and Robotics, 2013, Noordwijk, Netherlands, available at: http://robotics.estec.esa.int/ASTRA/Astra2013/Papers/Lavagna_2824514.pdf

  17. Guang Z., Jing-rui Z. Space tether net system for debris capture and removal, 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 2012. DOI: 10.1109/IHMSC.2012.71

  18. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644

  19. Avdeev A.V., Metel'nikov A.A. Bortovaya lazernaya ustanovka dlya bor'by s kosmicheskim musorom, Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=72840

  20. Ashurbeili I.R., Lagovier A.I., Ignat'ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, available at: http://trudymai.ru/eng/published.php?ID=24856


mai.ru — informational site MAI

Copyright © 2000-2019 by MAI