Virtual space application for mock-design tests on a spacecraft electronic model


Аuthors

Polyakov A. A.*, Zashchirinski S. A.**

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: alexey.polyakov@laspace.ru
**e-mail: zsa@laspace.ru

Abstract

A spacecraft creation in modern conditions makes the developer both conduct a profound engineering analysis in various fields and a large volume of tests in conditions close to the flight with the simulation of various impacting factors.

With the advent of advanced software for simulation modelling a concept of system-oriented design, based on application of the system of object-oriented models for developing basic simulation model of a space product, came to the forefront.

The described approaches allow performing tests, including model ones, with the help of which it is possible to determine with sufficient probability the spacecraft operational parameters and the reserve resource for each of them to make a decision on the readiness of the device for further application without flight design tests or with a significant cost reduction on them. Naturally, modelling, and simulation modelling in particular, herewith starts playing the main role, and its results evaluation with modern means of information processing. Already today, the modern means of modeling, engineering analysis and virtual design allow eliminate materiel application from mock-design, or at least significantly reduce the number of full-scale tests, substituting them by a greater amount of virtual tests.

At present, a technique for mock-tests executing by the spacecraft electron layout, employing virtual medium, is developed and conciliated at JSC “NPO Lavochkina”.

Virtual models application for tests preparation not only reduces the costs and risks associated with them, but also reduces the time required for the testing process itself.

It is obvious that the problem of experimental testing of the device can be fully solved only when it is completed by device tests, least of all differing from the standard sample, under the full-scale conditions, i.e. flight tests.

The presented article describes successively the goals and objectives imposed during the prototype tests in accordance with State Standards, as well as software and technical means to transfer the tests into the virtual space.

Keywords:

mock-design tests, virtual space, electronic dummy, PLM system, Siemens Teamcenter, Siemens NX; product electronic layout

References

  1. Afanas'ev B.A., Barsukov V.S., Gofin M.Ya., Zakharov Yu.V., Strel'chenko A.N., Shalunov N.P. Eksperimental'naya otrabotka kosmicheskikh letatel'nykh apparatov (Experimental testing of the spacecraft), Moscow, Izd-vo MAI, 1994, 412 p.

  2. Sistemy i kompleksy kosmicheskie. Terminy i opredeleniya. GOST R 53802-2010 (Ыpace systems and complexes of. Terms and definitions. State Standard R 53802-2010), Moscow, Standartinform, 2011, 28 p.

  3. Akhmetov R.N., Makarov V.P., Sollogub A.V. Izvestiya Samarskogo nauchnogo tsentra RAN, 2009, vol. 11, no. 3, pp. 165 – 176.

  4. Edinaya sistema konstruktorskoi dokumentatsii (ESKD). Elektronnaya model' izdeliya. Obshchie polozheniya. GOST 2.052-2015 (Unified system for design documentation. Electronic model of the product. Generalities. State Standard 2.052-2015), Moscow, Standartinform, 2019, 10 p.

  5. Polyakov A.A. Vestnik NPO im. S.A. Lavochkina, 2018, no. 1, pp. 79 - 83.

  6. Obzor Tecnomatix. Virtual'naya real'nost'. Siemens PLM Software RF, 2007, available at: http://www.igatec.com

  7. Virtual'nye ispytaniya pozvolyat razrabatyvat' novuyu tekhniku deshevle i bystreet, TASS, 2018, available at: https://old.fpi.gov.ru/press/media/2017031302

  8. Tsifrovoe proektirovanie, OAK, 2018, available at: https://www.uacrussia.ru/ru/innovations/tsifrovoe-proektirovanie

  9. “Energiya” na forume “Nastavnik-2018”, RKK “Energiya”, 2018, available at: https://www.energia.ru/ru/news/news-2018/news_02-19.html

  10. Emel'yanov A.A., Malyshev V.V., Smol'yaninov Yu.A., Starkov A.V. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85921

  11. Usovik I.V., Darnopykh V.V. Trudy MAI, 2013, no. 65, available at: http://trudymai.ru/eng/published.php?ID=35957

  12. Steganov G.B. Vvedenie v letnuyu ekspluatatsiyu bortovykh sistem elektrosnabzheniya (Introduction to flight operation side of electric power systems), Saint Petersburg, VIKKA, 1995, 75 p.

  13. Tsenter B.I., Chizhov O.A., Khotyaintsev A.G. Izuchenie nikel'-vodorodnogo akkumulyatora v rezhime dlitel'nogo tsiklirovaniya. Issledovaniya v oblasti elektrokhimicheskoi energetiki: Sbornik nauchnykh trudov VNIAI, Leningrad, Energoizdat, 1987, pp. 62 - 66.

  14. Grishin, Yu.P., Kazarinov Yu.M. Dinamicheskie sistemy, ustoichivye k otkazam (Fail-safe dynamic system), Moscow, Radio i svyaz', 1985, 176 p.

  15. Fateev V.F. Infrastruktura malykh kosmicheskikh apparatov (Infrastructure of small satellites), Moscow, Radiotekhnika, 2011, 432 p.

  16. Basyrov A.G., Goncharenko V.A., Zabuzov V.S., Kremez G.V., Esaulov K.A. Izvestiya vuzov. Priborostroenie, 2009, vol. 52, no. 4, pp. 70 – 74.

  17. Zakharov I.V., Ivanenko A.Yu., Kremez G.V., Frolkov E.V., Shpak A.V. Izvestiya vuzov. Priborostroenie, 2007, vol. 50, no. 6, pp. 65 – 67.

  18. Aver'yanov A.V. Izvestiya vuzov. Priborostroenie, 2009, vol. 52, no. 4, pp. 62 – 65.

  19. Aver'yanov A.V., Baranovskii A.M., Esaulov K.A. Izvestiya vuzov. Priborostroenie, 2014, vol. 57, no. 3, pp. 23 – 26.

  20. Kudryavtsev V.V. Osnovy kontrolya i diagnostiki (Fundamentals of monitoring and diagnostics), Saint Petersburg, VIKA imeni A.F. Mozhaiskogo, 1993, 158 p.

  21. Sall' Dzh.P.La, R. Dzh. Raz. Trudy II mezhdunarodnogo kongressa mezhdunarodnoi federatsii po avtomaticheskomu upravleniyu, Bazel', (27 August - 4 September 1963), Moscow, Nauka, 1965, 307 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход