Optimization of a broadband phased array with vibrator emitters


DOI: 10.34759/trd-2019-108-6

Аuthors

Tsvetkov V. A.1*, Kondrat’eva S. G.2**

1. Radiotechnical Institute named after academician A.L. Mintz, 10-1, str. 8 March, Moscow, 127083, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vtsvetkov@rti-mints.ru
**e-mail: kondratieff89@ya.ru

Abstract

The article studies the issue of matching antenna arrays (AA), consisting of vibrators and cross vibrators, located above the final metal screen at a height of ≈ λ/4. This matching is performed within the frequency range of ±10% and scanning angle of ± 60°.

Vibrators are powered by ideal oscillators with controlled impedance, located between the vibrator arms. At the first stage, a comparison of “blinding” properties in planar and linear AAs is performed. The results of comparison revealed that “blinding” manifested itself more strongly in flat AAs. At the second stage, the AA configuration is selected to mitigate “blinding” effect. Since “blinding” appears only in the E-plane, and depends on the distance between the vibrators, the best location option is to turn the emitters at an angle of 45° to the edges of the AA. In the third stage, the optimal emitter option is selected. Emitters with straight arms, sloping arms, and pins of sundry heights between these types of emitters are compared. The largest minimum width of the array pattern over the gain antenna pattern within the frequency range and radiation level along the screen, which should be no less than —10 dB. The best characteristics are demonstrated by the grid of vibrators with straight arms and pins of 0.225 λav for both vibrator and cross vibrator AAs.

At the last stage, the selected variant is optimized for the height above the screen, arm length and generator resistance. The gain level equal to 0 dB is selected as an optimization criterion. The direction pattern width at gain of 0 dB within the frequency range of ±10% was no less than 118.4° for vibratory AA, and 118.2° for cross-vibratory AA. Maximum SWR value within the frequency band in the scanning range of the vibratory AA was 3.3

The width of the beam along the 0 dB be realized gain in the frequency range of ± 10% was not less than 118.4° for the vibratory AR and 118.2° for the cross-vibratory AA. The maximum value of the SWR in the frequency band in the scanning range in the vibrator AA was 3.3. For the cross-vibratory AA, maximum SWR value was 3.3 as well.

Keywords:

vibrator antenna array, blinding, vibrator, cross-vibrator

References

  1. Bhattacharyya A.K. Phased array antennas, New York, John Wiley & Sons Inc., 2006, 516 p. DOI: 10.1002/9780470529188.ch7

  2. Mailloux R.J. Phased array antenna handbook, London, Artech House Inc., 2005, 515 p.

  3. Haupt R.L. Antenna Arrays: A Computational Approach, New York, John Wiley & Sons, 2010, 534 p. DOI: 10.1002/9780470937464.

  4. Surkov V.I. Raschet vibratornykh fazirovannykh antennykh reshetok s rasshirennym uglom skanirovaniya (Calculation of vibrated phased antenna arrays with extended scanning angle). Doctor’s thesis, Moscow, MEI, 2007, 231 p.

  5. Bogomyagkov A.I., Bodrov V.V., Markov G.T., Starostenko B.A. Raschet kharakteristik izlucheniya vibratornykh fazirovannykh antennykh reshetok s uchetom vliyaniya opornykh stoek. Sbornik nauchno-metodicheskikh statei po prikladnoi elektrodinamike. Vyp. 4. (Radiation characteristics calculation of the vibrated phased antenna arrays with regard for supporting stands impact), Moscow, Vysshaya shkola, 1980, pp. 164 – 207.

  6. Yastrebtsova O.I. Trudy MAI, 2014, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87134

  7. CST Microwave Studio, available at: www.cst.com

  8. Kurushin A.A. Proektirovanie SVCh ustroistv v CST STUDIO SUITE (Microwave units designing with CST STUDIO SUITE software), Moscow, Solon-press, 2018, 428 p.

  9. Yurtsev A.O., Bobkov Yu.Yu., Kizimenko V.V., Yubko A.P., Gerasimovich G.V. Modelirovanie antenn v rezhimakh izlucheniya i rasseyaniya v paketakh CST Studio, HFSS, FEKO i uzkospetsializirovannykh programmakh (Modeling antennas in radiation and scattering modes with CST Studio, HFSS, FEKO and highly specialized software), Minsk, BGUIR, 2012, 62 p, available at: https://www.bsuir.by/m/12_100229_1_85515.pdf

  10. Markov G.T., Sazonov D.M. Antenny (Antennas), Moscow, Energiya, 1975, 528 p.

  11. Khansen R.K. Skaniruyushchie antennye sistemy SVCh (Microwave scanning antennas), Moscow, Sovetskoe radio, 1969, vol. 2, 496 p.

  12. Voskresenskii D.I. Proektirovanie fazirovannykh antennykh reshetok (Designing phased array antennas), Moscow, Radiotekhnika, 2012, 744 p.

  13. Surkov V.I. Trudy Moskovskogo energeticheskogo instituta, 1981, no. 553. pp. 40 – 44.

  14. Bodrov V.V., Volodina I.V., Chistyakova I.A. Izvestiya vuzov. Radioelektronika, 1987, vol. 30, no. 2, pp. 49 – 53.

  15. Indenbom M.V. Antennye reshetki podvizhnykh obzornykh RLS. Teoriya, raschet, konstruktsii (Antenna arrays of mobile observation radars), Moscow, Radiotekhnika, 2015, 416 p.

  16. Indenbom M.V., Filippov V.S. Izvestiya vuzov. Radioelektronika, 1979, vol. XXII, no 2, pp. 34 – 41.

  17. Bodrov V.V., Surkov V.I. Shirokougol’noe soglasovanie vibratornoi FAR. Sbornik statei “Antenny” № 33 (Wide angle matching of vibrator phased array), Moscow, Radio i svyaz’, 1986, 102 p.

  18. Khansen R.S. Fazirovannye antennye reshetki (Phased array antennas), Moscow, Tekhnosfera, 2012, 560 p.

  19. Ashikhmin A. V., Bykov K. A., Pasternak Yu. G., Pershin P. V., Rembovskii Yu.A. Antenny, 2019, no. 2 (256), pp. 28 – 38.

  20. Kondrat’eva S.G. Dvukhchastotnaya fazirovannaya mobil’naya antennaya reshetka RLS L-diapazona (Two-frequency phased array mobile radar of L-band). Doctor’s thesis, Moscow, MAI, 2015, 20 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход