Space debris capturing technique ensuring its safe tether-assisted towing


Sizov D. V.*, Aslanov V. S.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia



Rockets upper stages are one of the most dangerous type of space debris, not so much herewith due to their weight and size, making collision with them rather dangerous, as they might spontaneously explode due the presence of residual fuel, creating plenty of debris with unpredictable trajectories. In this regard, many ways of space debris removing, and spent rocket stages in particular, have been proposed and analyzed in recent years. One of such methods is tether-assisted towing of passive space debris (object) by an active spacecraft (tug) to the upper atmosphere. The article considers the process of removal, consisting of three stages: harpoon capturing of the object, tether unwinding, and towing. Towing will be safe if both the tether and the object are oscillating around their equilibrium states. In this regard, the authors propose a capture technique, which employs the impact impulse from the harpoon to reduce the initial angular velocity of the object so that it will move to the position required for safe towing while the tether unwinding. Dependencies allowing determine the required position of the harpoon point of impact, and the object orientation at the moment of capture are presented. A tug thrust control law while tether unwinding, ensuring the tug reaching the specified point with the specified speed, is proposed as well. As an example of the proposed approach application, numerical modelling of the Ariane 4 rocket upper stage removal is presented. The numerical modelling results revealed that with the specified tug thrust, the tug’s reaching the specified position with subsequent towing was possible in the wide range of the tug masses. The results of the presented work can be employed for planning future missions on space debris removal from low near-Earth orbits.


space debris, harpoon, capturing, relative motion, tether-assisted towing


  1. Hakima H., Emami M.R. Assessment of active methods for removal of LEO debris, Acta Astronautica, 2018, vol. 144, pp. 225 – 243.

  2. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at:

  3. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal, Journal of guidance, control, and dynamics, 2011, vol. 34, no. 3, pp. 916 – 920.

  4. Ashurbeili I.R., Lagovier A.I., Ignat’ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, available at:

  5. Avdeev A.V., Metel’nikov A.A. Trudy MAI, 2016, no. 89, available at:

  6. Ryazanov V.V. Trudy MAI, 2019, no. 107, available at:

  7. Nishida S.I., Kawamoto S., Okawa Y., Terui F., Kitamura S. Space debris removal system using a small satellite, Acta Astronautica, 2009, vol. 65, no. 1 – 2, pp. 95 – 102.

  8. Schaub H., Sternovsky Z. Active space debris charging for contactless electrostatic disposal maneuvers, Advances in Space Research, 2014, vol. 53, no. 1, pp. 110 – 118.

  9. Kumar K. et al. Agora: Mission to demonstrate technologies to actively remove Ariane rocket bodies, In Proceedings of the International Astronautical Congress (IAC 2015), Jerusalem, International Astronautical Federation, 2015, pp. 1 – 16.

  10. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at:

  11. Aslanov V.S. Chaos Behavior of Space Debris during Tethered Tow, Journal of Guidance, Control and Dynamics, 2015, vol. 39, no. 10, pp. 2399 – 2405.

  12. Aslanov V.S., Yudintsev V.V. Chaos in Tethered Tug–Debris System Induced by Attitude Oscillations of Debris, Journal of Guidance, Control and Dynamics, 2019, vol. 42, no. 7, available at:

  13. Jasper L., Schaub H. Input shaped large thrust maneuver with a tethered debris object, Acta Astronautica, 2014, vol. 96, no. 1, pp. 128 – 137.

  14. Botta E.M., Sharf I., Misra A.K. Contact Dynamics Modeling and Simulation of Tether Nets for Space-Debris Capture, Journal of Guidance, Control and Dynamics, 2016, vol. 40, no. 1, pp. 110 – 123.

  15. Forshaw J.L. et al. Final payload test results for the RemoveDebris active debris removal mission, Acta Astronautica, 2017, vol. 138, pp. 326 – 342.

  16. Kang J., Zhu Z.H. Dynamics and control of de-spinning giant asteroids by small tethered spacecraft, Aerospace Science and Technology, 2019, vol. 94, available at:

  17. Ortiz Gómez N., Walker S.J.I. Eddy currents applied to de-tumbling of space debris: Analysis and validation of approximate proposed methods, Acta Astronautica, 2015, vol. 114, pp. 34 – 53.

  18. Aslanov V.S., Sizov D.A. Trudy MAI, 2018, no. 100, available at:

  19. Dudziak R., Tuttle S., Barraclough S. Harpoon technology development for the active removal of space debris, Advances in Space Research, 2015, vol. 56, no 3, pp. 509 – 527.

  20. Aglietti G.S. et al. The active space debris removal mission RemoveDebris. Part 2: in orbit operations, Acta Astronautica, 2019, available at:

  21. Kluever C.A. Space Flight Dynamics, John Wiley & Sons, 2018, 584 p.

  22. Deb K. An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 2000, vol. 186, no. 2 – 4, pp. 311 – 338.

Download — informational site MAI

Copyright © 2000-2020 by MAI