Studying hail shot characteristics and solving trajectory problem of uncontrolled flight of an arbitrary shaped solid body for aircraft engines full-scale testing on durability


Аuthors

Mustafaev T. A.

National Researcher Politechnik University (PNIPU), 29, Komsomolsky av., Perm, 614990, Russia

e-mail: mustafaev.t@yandex

Abstract

Along with the development of computational methods for studying the strength characteristics of aircraft structural elements, a field experiment is widely used, reproducing the real impact of birds on aircraft structures at the collision in flight. The presented article is devoted to the study of the hail shot characteristics and trajectory problem solution of uncontrolled flight of an arbitrary shaped rigid body for full-scale tests of experimental and serial aircraft engines on durability by test bench, simulating the hit by birds or hail.

The full-scale tests on of large birds’ ingress in the aircraft engine, which, according to current regulations, are performed on a running engine, or rotating impellers of fans or compressors on the test benches are extremely cost intensive. Thus, it is expedient to perform computing analysis of the working blades resistance to the impact interaction with a bulky bird and hail prior to the full-scale tests conducting.

Test bench installations for conducting tests on blades resistance to impact interaction with a bulky bird or hail should maximally reflect conditions of real interaction of full-scale impeller with a bird or hail. They should also satisfy a lot of hardly compatible requirements, such as mathematical model for computing internal and external ballistics of the test bench, trajectory problem solution of a solid body uncontrolled flight, which we will try to solve in the presented article.

Keywords:

full-scale tests, hail shot, trajectory problem, bird-resistance, hail-resistance

References

  1. Verbitskii A.B., Sidorenko A.S. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53502

  2. Uilbek Dzh.S., Dzh. L. Rend. Energeticheskie mashiny, 1981, vol. 103, no. 4, pp. 126 – 133.

  3. Wang Xinjun, Feng Zhenzhou, Wang Fusheng, Yue Zhufeng. Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation, Chinese Journal of Aeronautics, 2007, vol. 20, no. 6, pp. 511 – 517.

  4. Budgey R. The development of a substitute artificial bird by the International Birdstrike Research Group for use in aircraft component testing, Conference of International Bird Strike Committee 25/WP-IE3, Amsterdam, 2000, pp. 543 – 550.

  5. Dolgopolova N.V., Ongirskii G.G., Smetankina N.V. et al. Imitator ptitsy dlya ispytanii konstruktsii samoleta na ptitsestoikost’ (A bird simulator for aircraft design testing for bird resistance), Moscow, Izdatel’skii otdel TsAGI, 2007, no. 2675, pp. 46 – 50.

  6. Ongirskii G.G., Shupikov A.N., Ugrimov S.V. Voprosy proektirovaniya i proizvodstva konstruktsii letatel’nykh apparatov, 2008, no. 5(56), pp. 54 – 62.

  7. Anamova R.R. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58823

  8. Rogachev A.I. Lebedev A.M. Ornitologicheskoe obespechenie poletov (Ornithological support of flights), Moscow, Transport, 1984, 126 p.

  9. Tamm A.Yu. Razvitie podkhodov tsifrovogo proektirovaniya i modelirovaniya v aviastroenii (Meropriyatie: Sozdanie Virtual’nogo Ispytatel’nogo Poligona “Krylo”), 2019, available at: https://nticenter.spbstu.ru/nti_projects/10

  10. Normy letnoi godnosti grazhdanskikh samoletov SSSR (Norms of airworthiness of the USSR civil aircraft), Moscow, Mezhvedomstvennaya komissiya po normam letnoi godnosti grazhdanskikh samoletov i vertoletov SSSR, 1984, 464 p.

  11. Amir’yants G.A., Malyutin V.A. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100600

  12. Federal’nye aviatsionnye pravila. Chast’ 25. Normy letnoi godnosti, transportnye kategorii samoletov (Federal Aviation Regulations. Part 25. Airworthiness Standards, transport categories of Aircraft), Amsterdam, FAA, 1991, 177 p.

  13. ASTM. Standartnyi metod ispytaniya stekol kabiny samoleta na udar tushkami ptits, mezhdunarodnyi standart F 330-89 (“Standard test method for cockpit glass on the bird carcasses strike”, International Standard ASTM, F 330-89), povtorno utverzhden 2004, pp. 2, 4, 5.

  14. Pavlov Yu.I., Shain Yu.A., Abramov B.I. Proektirovanie ispytatel’nykh stendov dlya aviatsionnykh dvigatelei (Test benches design for aircraft engines), Moscow, Mashinostroenie, 1979, 152 p.

  15. Lavrik V.S., Rubtsov I.F., Sherer E.A. Letchik, vnimanie – ptitsy! (Pilot, attention! Birds!), Moscow, Izd-vo Ministerstva oborony SSSR, 1970, 104 p.

  16. Lebedinskii V.I., Lyakhovenko I.A., Merkur’ev A.V., Muzychenko V.P. Sily i davleniya pri soudarenii ptitsy s ploskoi poverkhnost’yu (Forces and pressures at a bird collision with a flat surface. Proceedings of TSAGI), Moscow, Izdatel’skii otdel TsAGI, 2000, vol. 2639, 83 p.

  17. Kreitser B.A., Stepanov I.P. Drobovoi vystrel (A shot gun shot), Moscow, Fizkul’tura i sport, 1959, 72 p.

  18. Arbuzov I.A. Matematicheskii analiz drobovogo vystrela (Mathematical analysis of a shotgun shot), Moscow, Kompaniya Sputnik+, 2006, 31 p.

  19. Ginesin L.Yu. Chetvertaya Rossiiskaya konferentsiya pol’zovatelei programmnykh produktov firmy. MSC “MSC Forum 2001”, sbornik dokladov, Moscow, TsIAM, 2001, available at: http://www.mscsoftware.ru/publishes

  20. Kondrashin M.A., Arsenov O.Yu., Kozlov I.V. Trudy MAI, 2016, no. 89, available at http://trudymai.ru/eng/published.php?ID=73411


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход