Oscillations of a rod carrying a small attached mass


DOI: 10.34759/trd-2020-110-2

Аuthors

Dobryshkin A. Y.

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

e-mail: wwwartem21@mail.ru

Abstract

In this paper, the oscillation of a rod carrying a small attached mass in a nonlinear setting is considered. The basis for the development of a new mathematical model is the general equation of oscillations. The mounting location and the influence of the small attached mass on the frequency characteristics of the natural frequency are taken into account. The first and second eigenfrequency characteristics of the oscillations of the rod carrying the attached mass are determined. It is also determined that the presence of a small attached mass is a factor that triggers the interaction of internal forms of vibration, which can lead the structure to a state of resonance. The obtained values of the wave-forming parameter above zero refer to the solid, and below zero to the weak parameter of the damping force. The presence of several components of the internal oscillatory process is a feature of the system in which the splitting of the frequency spectrum is possible. The small attached mass is one of the inclusions that deviate from the ideal mechanism of harmonic vibrations. The solution of an infinite system of nonlinear algebraic equations uses a new asymptotic approach based on the introduction of an artificial small parameter μ. The case when the system is close to the state of internal resonance is considered. As a result of the study, it was found that the mathematical model specified in the course of the study is better than the existing ones and is consistent with the available data.

Keywords:

rod, vibrations, small attached mass

References

  1. Grigolyuk E.I., Selezov I.T. Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek. Seriya: Mekhanika deformiruemogo tverdogo tela (Nonclassical theories of vibrations of rods, plates, and shells), Moscow, VINITI, 1973, vol. 5, 272 p.

  2. Grigolyuk E.I. Izvestiya AN SSSR. 1955, no. 3, pp. 33 – 68.

  3. Antuf’ev B.A. Kolebaniya neodnorodnykh tonkostennykh konstruktsii (Oscillations of inhomogeneous thin-walled structures), Moscow, Izd-vo MAI, 2011, 176 p.

  4. Sysoev O.E., Dobryshkin A.Yu., Nein Sit Naing. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90079

  5. Z. Wang, Q. Han, D.H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell, Thin-Walled Structures, 2017, no. 119, pp. 438 – 446. DOI: 10.1016/j.tws.2017.07.002

  6. Sysoev O.E., Dobryshkin A.Y., Nyein Sit Naing, Baenkhaev A.V. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell, Materials Science Forum, 2019, vol. 945, pp. 885 – 892.

  7. Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method, Applied Acoustics, 2013, vol. 74, no. 3, pp. 425 – 439.

  8. Y. Qu, H. Hua, G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries, Composite Structures, 2013, vol. 95, pp. 307 – 321.

  9. Y. Xing, B. Liu, T. Xu. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions, International Journal of Mechanical Sciences, 2013, vol. 75, pp. 178 – 188.

  10. M. Chen, K. Xie, W. Jia, K. Xu. Free and forced vibration of ring-stiffened conical–cylindrical shells with arbitrary boundary conditions, Ocean Engineering, 2015, vol. 108, pp. 241 – 256.

  11. H. Li, M. Zhu, Z. Xu, Z. Wang, B. Wen. The influence on modal parameters of thin cylindrical shell under bolt looseness boundary, Shock and Vibration, 2016, vol. 2016, Article ID 4709257, 15 p.

  12. Foster N., Fernández–Galiano L. Norman Foster in the 21st Century, AV Monografías, 2013, Artes Gráficas Palermo, 163 – 164.

  13. Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics, Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93 – 104.

  14. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.

  15. Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58524

  16. Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71, available at: http://trudymai.ru/eng/published.php?ID=46621

  17. Demin A.A., Golubeva T.N., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field, 11th Students’ Science Conference “Future Information technology solutions”, Bedlewo, 3-6 October 2013, pp. 61 – 66.

  18. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58589

  19. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105618


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход