Fixture elements arrangement optimization when aircraft assembly based on mesh adaptive direct search


DOI: 10.34759/trd-2020-110-18

Аuthors

Pogarskaia T. A.

Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

e-mail: Pogarskaya.t@gmail.com

Abstract

The presented article is devoted to the problem of the arrangement optimization of fixture elements while aircraft assembly. Minimization of fixture elements number preserving the final product quality is one of the key factors of production intensification in aerospace industry. The objective of the work consists in verifying further application possibility of Mesh Adaptive Direct Search and its modification to the problem under consideration. This method is stipulated by its following specifics, such as no need for derivations computing, and the structure, which implies two independent computing blocks. The first feature is important since the optimization problem under consideration is combinatorial and relates to the NP class. Correspondingly, derivations computing is not possible, and the global minimum can be found by the full enumeration method. The second feature, namely steps independence, opens the possibility of employing any algorithm as a search step. The article considers the following approaches: black box optimization, black box optimization with spatial relaxation of forces and a technique of modified step of searching based on total information on the problem being solved.

Computations were performed on the test model of the wing attachment with fuselage. The results are compared with Local Variation Method (a greedy algorithm) to evaluate their efficiency and possibility of their further application for optimization of full-scale models. Mesh Adaptive Direct Search proved to be applicable as it allowed obtain improved relative to the initial fixture elements arrangement. Modification of the algorithm searching step based on total known information ensured the best balance between computation time and the final result quality.

Keywords:

aircraft assembly, assembly optimization, local variations method, gradientless optimization, contact problem

References

  1. Bakker O.J., Popov A.A. and Ratchev S.M. Variation analysis of automated wing box assembly, The 50th CIRP Conference on Manufacturing Systems, Procedia CIRP 63, 2017, URL: http://eprints.nottingham.ac.uk/41389/1/PROCIR-D-16-01298R1.pdf

  2. Govorkov A.S. Trudy MAI, 2011, no. 48, URL: http://trudymai.ru/eng/published.php?ID=27146

  3. Yang D., Qu W. and Ke Y.`Evaluation of residual clearance after prejoining and pre-joining scheme optimization in aircraft panel assembly, Assembly Automation, 2016, vol. 36 (4), pp. 376 – 387.

  4. Larionova A.A., Dudchenko A.A., Sergeev V.N. Trudy MAI, 2016, no. 90, URL: http://trudymai.ru/eng/published.php?ID=74691

  5. Eck C., Janusek J., Krbec M. Unilateral contact problems. Variational methods and existing theorems, Taylor and Francis, 2005, 398 p.

  6. Hlavacek I., Haslinger J., Necas J., Lovisek J. Solution of variational inequalities in mechanics, Springer-Verlag, 1998, 287 p.

  7. Lupuleac S.V., Petukhova M.V., Shinder Y.K., Bretagnol B. Methodology for solving contact problem during riveting process, SAE International Journal of Aerospace, 2011, vol. 4 (2), 952 – 957, doi:10.4271/2011-01-2582

  8. Petukhova M.V., Lupuleac S.V., Shinder Y.K., Smirnov A.B., Yakunin S.A., Bretagnol B. Numerical approach for airframe assembly simulation, Journal of Mathematics in Industry, 2014, vol. 4 (1), pp. 1 – 12.

  9. Stefanova M., Yakunin S., Petukhova M., Lupuleac S., Kokkolaras M. An interior-point method based solver for simulation of aircraft parts riveting, Engineering Optimization, 2017, vol. 50 (5), pp. 781 – 796.

  10. Marx D. A parameterized view on matroid optimization problems, Theoretical Computer Science, 2009, vol. 410 (44), pp. 4471 – 4479.

  11. Abramson M.A., Audet C., Chrissis J.W., Walston, J.G. Mesh adaptive direct search algorithms for mixed variable optimization, Optimization Letters, 2009, vol. 3 (1), pp. 35 – 47.

  12. Audet C., Dennis Jr. J.E. Mesh adaptive direct search algorithms for constrained optimization, SIAM Journal on Optimization, 2006, vol. 17 (1), pp. 188 – 217.

  13. Audet C., Hare W. Derivative-Free and Blackbox Optimization, Springer Series in Operations Research and Financial Engineering, Springer International Publishing, 2017, 302 p. DOI 10.1007/978-3-319-68913-5

  14. Audet C., Ihaddadene A., Digabel S.L., Tribes C. Robust optimization of noisy blackbox problems using the mesh adaptive direct search algorithm, Optimization Letters, 2018, vol. 12 (4), pp. 675 – 689.

  15. Audet C., Kokkolaras M., Le Digabel S., Talgorn B. Order-based Error for Managing Ensembles of Surrogates in Mesh Adaptive Direct Search, Journal of Global Optimization, 2018, vol. 70, pp. 645 – 675.

  16. Audet C., Le Digabel S., Tribes C. NOMAD user guide, Technical Report G-2009-37, Les cahiers du GERAD, 2009, 121 p.

  17. Le Digabel S. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm, ACM Transactions on Mathematical Software, 2011, vol. 37, issue 4, pp. 44:1 – 44:15.

  18. Pogarskaia T., Churilova M., Petukhova M., Petukhov E. Simulation and optimization of aircraft assembly process using supercomputer technologies, Communications in computer and information science, 2019, vol. 965, pp. 367 – 378.

  19. Zaitseva N., Pogarskaia T., Minevich O., Shinder J., Bonhomme E. Simulation of Aircraft Assembly Via ASRP Software, SAE Technical Papers, September, 2019, doi:10.4271/2019-01-1887

  20. Zaitseva N., Lupuleac S., Petukhova M., Churilova M., Pogarskaia T., Stefanova M. High Performance Computing for Aircraft Assembly Optimization, Global Smart Industry Conference, GloSIC 2018, Chelyabinsk, Russia, 13-15 November 2018, pp. 181 – 187. URL: http://toc.proceedings.com/42204webtoc.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход