Effective test benches for studying natural vibrations of open cylindrical shells and plates


DOI: 10.34759/trd-2020-113-01

Аuthors

Dobryshkin A. Y.*, Sysoev O. E.**, Sysoev E. O.**

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: wwwartem21@mail.ru
**e-mail: fks@knastu.ru

Abstract

A need for experimental test benches, with which one or several parameters can be measured with high accuracy, arises for conducting tests of thin-walled shells. One of the most significant factors is exclusion or minimization of measurement errors. The purpose of this work consists in identifying a new regularity able to eliminate or physically reduce the calculation error when determining numerical oscillations characteristics of the thin-walled open shells of various curvatures. It was confirmed in the course of the research that a significant number of factors affect the accuracy of certain characteristics of the oscillatory process. Description of all physical laws, affecting measurements accuracy while experimental set up, touches on a significant time period. Thus, on the assumption of the conducted study a technical device, named a test bench, was manufactured in the course of this work. Test benches allow significant measurement quality increase. A test bench for contactless study of natural and forced oscillations of open cylindrical shells was developed in the engineering structures laboratory of the Komsomolsk-on-Amur State University. This test bench is metallic and rigidly attached to the base. Its small size allows measuring numerical characteristics of thin-walled open shells vibrations with high fidelity while measuring their width, height and curvature, as well as mounting methods. The studies aimed at revealing effective devices improving measurements quality, were conducted for its creation.

The scope includes all thin-walled shells employed in aerospace technology, submarines and ground structures. In the course of shell structures operation accidents occur, sometimes with casualties. This circumstance necessitates improvement of technical and scientific aspects of calculation, as well as mathematical and physical models. Experiments setting and conducting for confirming and correcting the developed mathematical models is an integral part of these studies. Since human casualties take place while shells operation, the studies in this area should certainly be continued. Flights of spacecraft and other delivery vehicles, for which the shell is the only possible structural solution, make relevant the studies in the field of shells vibrations.

Keywords:

thin-walled cylindrical shell, test bench, free vibrations

References

  1. Vlasov V.Z. Obshchaya teoriya obolochek i ee prilozhenie v tekhnike (General theory of shells and its application in technology), Moscow–Leningrad, Gostekhizdat, 1949, 784 p.

  2. Kubenko V.D. Koval’chuk P.S., Krasnopol’skaya T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek (Nonlinear interaction of shapes of cylindrical shells bending vibrations), Kiev, Naukova dumka, 1984, 220 p.

  3. Antuf’ev B.A. Kolebaniya neodnorodnykh tonkostennykh konstruktsii (Oscillations of inhomogeneous thin-walled structures), Moscow, Izd-vo MAI, 2011, 176 p.

  4. Sysoev O.E., Dobryshkin A.Yu., Nein Sit Naing. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90079

  5. Z. Wang, Q. Han, D.H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell, Thin-Walled Structures, 2017, no. 119, pp. 438 – 446. DOI: 10.1016/j.tws.2017.07.002

  6. Sysoev O.E., Dobrychkin A.Yu., Nyein Sitt Naing, Baenkhaev A.V. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell, Materials Science Forum, 2019, vol. 945, pp. 885 – 892. DOI: 10.4028/www.scientific.net/MSF.945.885

  7. Sysoev O.E., Dobrychkin A.Yu. Natural vibration of a thin desing with an added mass as the vibrations of a cylindrical shell and curved batten. ISSN 2095-7262 CODEN HKDXH2, Juornal of Heilongjiang university of science and technology, 2018, vol. 28, no. 1, pp.75 – 78.

  8. Sysoev O.E., Dobrychkin A.Yu., Nyein Sitt Naing. Nonlinear Oscillations of Elastic Curved plate carried to the associated masses system, IOP Conference Series: Materials Science and Engineering, 2017, vol. 262. DOI: 10.1088/1757-899X/262/1/012055

  9. Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method, Applied Acoustics, 2013, vol. 74, no. 3, pp. 425 – 439.

  10. Y. Qu, H. Hua, and G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries, Composite Structures, 2013, vol. 95, pp. 307 – 321.

  11. Y. Xing, B. Liu, and T. Xu. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions, International Journal of Mechanical Sciences, 2013, vol. 75, pp. 178 – 188.

  12. M. Chen, K. Xie, W. Jia, and K. Xu. Free and forced vibration of ring-stiffened conical–cylindrical shells with arbitrary boundary conditions, Ocean Engineering, 2015, vol. 108, pp. 241 – 256.

  13. H. Li, M. Zhu, Z. Xu, Z. Wang, and B. Wen. The influence on modal parameters of thin cylindrical shell under bolt looseness boundary, Shock and Vibration, 2016, DOI: http://dx.doi.org/10.1155/2016/4709257

  14. Foster N., Fernández–Galiano L. Norman Foster in the 21st Century. AV, Monografías, Artes Gráficas Palermo, 2013, pp. 163 – 164.

  15. Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics, Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93 – 104.

  16. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.

  17. Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58524

  18. Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=46621

  19. Demin A.A., Golubeva T.N., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field, 11th Students’ Science Conference «Future Information technology solutions», Bedlewo, 3-6 October 2013, pp. 61 – 66.

  20. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58589

  21. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105618


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход