Dynamic model of temporarily fixed ground targets hitting process by a group of small-class attack unmanned aerial vehicles
DOI: 10.34759/trd-2020-115-18
Аuthors
1*, 1**, 2, 3***1. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
2. Joint-stock company “Scientific and production enterprise “Radar-mms”, 37, Novosel'kovskaya str., lit. A, Sankt-Peterburg, 197375, Russia
3. MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin” (branch in the city of Chelybinsk), 40, Gorodok-11, Chelybinsk, 454015, Russia
*e-mail: sasha303_75@mail.ru
**e-mail: rybalkovvs@yandex.ru
***e-mail: ronin0877@mail.ru
Abstract
The article presents the dynamic model of the fixed ground targets hitting process by the by group of small-class attack unmanned aerial vehicles. Considering the said process is probabilistic both in states and in time, the dynamic model is based on the Markov’s random processes theory with continuous time and discrete state, and on the theoretic basis of the simplest flows.
A scenario for groups of small-class unmanned aerial vehicles application for hitting temporarily fixed ground targets, revealing the order of actions at each stage of the process under study, was employed as initial data for determining states of the dynamic model.
New dynamic model differs from the known ones by inclusion of the additional blocks. The first one realizes probabilistic parameters computing of wind disturbances due to the special maneuver, and the second computes the cycles of the unmanned aerial vehicles groups’ flights from the U-turn point to the target to the ammunition discharge point with account for its hitting probability with acceptable direction deviation.
Studying the model allows determine conflicting variable parameters of small-class unmanned aerial vehicles’ combat maneuvering and calculate their rational values. On the one hand, these parameters affect the discharge accuracy and, consequently, rational ammunition consumption. On the other hand, extra maneuvering may significantly increase the hitting time, which is utterly critical for the temporary fixed targets, which can be removed out of strike.
A statistical model was being studied initially in this work to solve the set problem on hitting temporary fixed targets in a specified time. Further, having solved numerically the system of linear inhomogeneous differential equations with constant coefficients, developed for the dynamic model, the authors obtained time dependencies for various states of the process under study.
The conclusion to the article presents the result of the impact estimation of the sought probabilistic parameters of a group of strike unmanned aerial vehicles combat maneuvering on the probability of the task accomplishment at various time instants. The most significant probabilistic parameter, which increasing requires extra operations while actions planning, was defined.
The most significant probabilistic parameter, which is to be additionally increased during the stage of operation planning, is detected.
Keywords:
: attack unmanned aerial vehicle, small class, Markov random process, Poisson flow, reaction time, ground targets hittingReferences
-
Anan'ev A.V., Filatov S.V., Rybalko A.G. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 12, pp. 455 - 460.
-
Karpenko A.V. Voenno-tekhnicheskii sbornik “Bastion” (zhurnal oboronno-promyshlennogo kompleksa), 2019, no. 11. URL: http://bastion-karpenko.ru/phoenix-bla
-
Anan'ev A.V., Filatov S.V., Petrenko S.P., Rybalko A.G. Aerospace MAI Journal, 2019, vol. 26, no. 1, pp. 166 – 173.
-
Zubov V.N. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu, 2018, no. 5-6 (119-120), pp. 47 – 57.
-
Anan'ev A.V., Filatov S.V., Rybalko A.G. Voennaya mysl', 2019, no. 4, pp. 26 – 31.
-
Anan'ev A.V., Rybalko A.G., Ryazantsev L.B., Klevtsov R.P. Voennaya mysl', 2020, no. 1, pp. 85 – 97.
-
Atakovavshie bazu v Khmeimim bespilotniki, tekhnicheskii razbor. URL: https://ilipin.livejournal.com/162716.html
-
Anan'ev A.V., Rybalko A.G., Goncharenko V.I., Klevtsov R.P. Trudy MAI, 2019, no. 107. URL: http://trudymai.ru/ eng/published.php?ID =107869
-
Rybalko A.G., Anan'ev A.V., Lazorak A.V., Klevtsov R.P. Vestnik Kontserna VKO “Almaz-Antei”, 2019, no. 3 (30), pp. 83 – 98.
-
Rybalko A.G., Anan'ev A.V., Klevtsov R.P., Karbysheva K.M. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2019619663, 22.07.2019.
-
Rybalko A.G., Anan'ev A.V., Klevtsov R.P. Patent 2708705 RF, MPK F41J 5/00, 11.12.19.
-
Khalimov N.R., Mefedov A.V. Sistemy upravleniya, svyazi i bezopasnosti, 2019, no. 3, pp. 1 - 13. DOI: 10.24411/2410-9916-2019-10301
-
Ivashova N.D., Mikhailin D.A., Chernyakova M.E., Shanygin S.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102223
-
Merkulov V.I., Milyakov D.A., Samodov I.O. Izvestiya YuFU. Tekhnicheskie nauki. 2014, no. 12 (161), pp. 157 - 166.
-
Lebedev G.N., Mirzoyan L.A., Efimov A.V. Trudy MAI, 2011, no. 48. URL: http://trudymai.ru/eng/published.php?ID=26972
-
Balyk V.M., Zenkov D.N. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=28043
-
Evdokimenkov V.N., Krasil'shchikov M.N., Sebryakov G.G. Izvestiya YuFU. Tekhnicheskie nauki, 2016, no. 1 (174), pp. 29 – 44.
-
Lebedev G.N., Rumakina A.V. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=61905
-
Kim N.V., Krylov I.G. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35503
-
Dmitriev V.I., Zvonarev V.V., Lisitsyn Yu.E. Trudy MAI, 2020, no. 112. URL: http://trudymai.ru/eng/published.php?ID=116566. DOI: 10.34759/trd-2020-112-16
-
Medynskii M.M. Trudy MAI, 2012, no. 61. URL: http://trudymai.ru/eng/published.php?ID=35501
-
Verba V.S., Tatarskii B.G. Kompleksy s bespilotnymi letatel'nymi apparatami. V 2-kh kn.: Printsipy postroeniya i osobennosti primeneniya kompleksov s BLA (Unmanned aerial systems. Principles of development and of application specifics of complexes with UAV), Moscow, Radiotekhnika, 2016, vol. 1, 512 p.
-
Novak K.V., Gorokhova E.A., Toforov M.S. Robotizatsiya Vooruzhennykh Sil Rossiiskoi Federatsii: sbornik trudov II Voenno-nauchnoi konferentsii, Moscow, GNIITsRT, 2017, pp. 187 – 195.
-
Panov S.A., Khalezov M.V., Shmarov A.N. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Tekhnika i tekhnologii, 2016, vol. 9, no. 3, pp. 423 – 434.
-
Dontsov A.A., Kalachev V.V., Koziratskii Yu.L., Levshin E.A. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2020, no. 13, pp. 259 – 268. URL: http://akademiya-vvs.rf/images/docs/vks/13-2020/259-268.pdf.
-
Krasnov A.M. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=27946
-
Pikalov S.A. Trudy MAI, 2012, no. 51. URL: http://trudymai.ru/eng/published.php?ID=29148
-
Kozlitin S.N., Koziratskii Yu.L., Budnikov S.A. Sistemy upravleniya, svyazi i bezopasnosti, 2020, no. 1, pp. 49 - 73. DOI: 10.24411/2410-9916-2020-00001.
-
Anan'ev A.V., Rybalko A.G. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2019, no. 11, pp. 58 – 68. URL: http://akademiya-vvs.rf/images/docs/vks/11-2019/58-68.pdf.
-
Anan'ev A.V., Koziratskii Yu.L. et al. Patent 2334937 RF, MPK F41G 7/30, 27.09.08.
-
Venttsel' E.S., Ovcharov L.A. Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya (Random process theory and its engineering applications), Moscow, Vysshaya shkola, 1998, 354 p.
-
Matalytskii M.A. Elementy teorii sluchainykh protsessov (Elements of Random Process Theory), Grodno, GrGU, 2004, 326 p.
-
Alekseev O.G., Anisimov V.G., Anisimov E.G. Markovskie modeli boya (Markov combat models), Moscow, Voenizdat, 1985, 85 p.
-
Arnol'd V.I. Obyknovennye differentsial'nye uravneniya (Ordinary differential equations), Moscow, MTsNMO, 2012, 344. p.
-
Agafonov S.A. Differentsial'nye uravneniya (Differential equations), Moscow, MGTU, 2011, vol. VIII, 347 p.
Download