Numerical method for studying temperature regimes of an inhomogeneous, structured body


DOI: 10.34759/trd-2020-115-19

Аuthors

Maskaykin V. A.

e-mail: vladimir.maskaykin@mail.ru

Abstract

In the aviation industry, thermal insulation mineral, fiberglass and polymer materials are employed for operation in extremely low temperature conditions. In certain cases, the structures, which perform the function of absolute isolation of gases from the external thermal impacts, are being created to obtain thermal isolation. If thermal isolation materials are being considered, the thermal isolation life span of such materials does not always satisfy the needs for temperature retention, and being regarded as a secondary subject operating in temperature regimes. The presented work solves two dimensional thermal conductivity problem of the element serving as a thermal insulator. It includes as well the study of heat transfer at the interaction of various materials between each other and their structural distribution in the element.

To solve the set problem, let us consider a conventionally selected segment (element) of the heat-insulating sheathing. The requirement consists in ensuring thermal isolation of the specified element in conditions of low temperatures by means of various materials and their structural distribution in the element. This problem solution is being performed by creating mathematical model and solving it numerically based on an implicit difference scheme. Computations of the mathematical model include the thermal conductivity problems of homogeneous body, a heterogeneous body with the structure of materials stratification, and the structure of the chess distribution of materials.

The results of the study show that the interaction of different materials in the element and the structural distribution of materials in the element play an important role in increasing thermal insulation properties. Interaction in heterogeneous bodies of various heat-insulating materials with each other has a low thermal insulation index, in contrast to the interaction of a heat-insulating material with the other, having the opposite thermal conductivity characteristics. An increase in thermal insulation in such body is accompanied by thermal insulation of a material with high thermal conductivity properties. A mutual substitution, “balancing” of the processes of thermal conductivity of materials with each other occurs.

Keywords:

thermal insulation, heterogeneous body, non-stationary thermal conductivity, thermal insulation materials, materials structuring in the body

References

  1. Attalla M. Experimental investigation of heat transfer and pressure drop of SiO2/water nanofluid through conduits with altered cross-sectional shapes Heat, Heat and Mass Transfer, 2019, no. 55, pp. 3427 – 3442. DOI: 10.1007/s00231-019-02668-0

  2. Zhang Y., Zhang X., Li M. et al. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner, Heat and Mass Transfer, 2019, no. 55, pp. 3117 - 3131. DOI: 10.1007/s00231-019-02647-5

  3. Davoodi H., Yaghoubi M. Experimental and numerical study of natural convection heat transfer from arrays of zigzag fins, Heat and Mass Transfer, 2019, no. 55, pp. 1913 - 1926. DOI: 10.1007/s00231-018-2449-5

  4. Hooman K., Sadafi H., Mancin S. et al. Theoretical analysis of free convection in a partially foam-filled enclosure, Heat and Mass Transfer, 2019, no. 55, pp. 1937 – 1946. URL: https://doi.org/10.1007/s00231-018-2466-4

  5. Woodfield P. L., Masanori Monde, Yuichi Mitsutake. Time and space resolution of analytical solution for two-dimensional inverse heat conduction problem, International Heat Transfer Conference, 2006. DOI: 10.1615/IHTC13.p27.50

  6. Nicola Bianco, Gaetano Contento, Salvatore Cunsolo, Marcello Iasiello, Vincenzo Naso, Maria Oliviero. Heat transfer enhancement in open-cell foams // Annual review of heat transfer, 2017, pp. 317 - 366. DOI: 10.1615/AnnualRevHeatTransfer.2017017615

  7. Maskaikin V.A. Trudy MAI, 2020, no. 111, URL: http://trudymai.ru/eng/published.php?ID=115116&eng=N. DOI: 10.34759/trd-2020-111-4

  8. Benderskii B.Ya., Chernova A.A. Trudy MAI, 2018, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115121. DOI: 10.34759/trd-2020-111-5

  9. Savitskii D.V., Aksenov A.A., Zhluktov S.V. Trudy MAI, 2020, no. 101. URL: http://trudymai.ru/eng/published.php?ID=96554

  10. Egorov I.A. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=67804

  11. Goryachev O.V., Minchuk S.V. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35541

  12. Berkovskii B.M., Nogotov E.F. Raznostnye metody issledovaniya zadach teploobmena (Difference methods for studying heat transfer problems), Minsk, Nauka i tekhnika, 1976, 144 p.

  13. Samarskii A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha (Computational heat transfer), Moscow, Editorial URSS, 2003, 785 p.

  14. Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti (Difference methods for solving heat conduction problems), Tomsk, TPU, 2007, 172 p.

  15. Lykov A.V. Teoriya teploprovodnosti (Theory of thermal conductivity), Moscow, Vysshaya shkola, 1967, 600 p.

  16. Plity iz mineral'noi vaty na sinteticheskom svyazuyushchem teploizolyatsionnye. Tekhnicheskie usloviya. GOST 9573-2012 (Thermal insulating plates of mineral wool on syntetic binder. Specifications, State Standard 9573-2012), Moscow, Standartinform, 2019, 12 p.

  17. Izdeliya teploizolyatsionnye iz steklyannogo shtapel'nogo volokna. Tekhnicheskie usloviya. GOST 10499-95 (Heat insulating products made of glass staple fibre. Specifications, State standard 10499-95), Moscow, Izdatel'stvo standartov, 1996, 12 p.

  18. Plity teploizolyatsionnye iz penoplasta na osnove rezol'nykh fenoloformal'degidnykh smol. Tekhnicheskie usloviya. GOST 20916-87 (Foam plastic heat-insulating slabs based on resol phenol-formaldehyde resins. Specifications, State standard 20196-87), Moscow, Izdatel'stvo standartov, 1987, 9 p.

  19. Chirkin V.S. Teplofizicheskie svoistva materialov (Thermophysical properties of materials), Moscow, FIZMATGIZ, 1959, 356 p.

  20. Beletskii V.M., Krivov G.A. Alyuminievye splavy (sostav, svoistva, tekhnologiya, primenenie) (Aluminum alloys (composition, properties, technology, application), Kiev, KOMINTEKh, 2005, 365 p.

  21. Kiselev B.A. Stekloplastiki (Fiberglass plastic), Moscow, Gosudarstvennoe nauchno-tekhnicheskoe izdatel'stvo khimicheskoi literatury, 1961, 240 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход