Probability assessing technique for a fighter guidance to the allowed guided missiles launches zone under conditions of incomplete instrumentation


DOI: 10.34759/trd-2021-118-21

Аuthors

Efanov V. V.*, Zakota A. A.**, Gunkina A. S.***

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: efanov55@mail.ru
**e-mail: 500vvs@rambler.ru
***e-mail: volan100@mail.ru

Abstract

Confrontation of parties at ranges exceeding the range of visual visibility, and confrontation at visual visibility may be distinguished in modern air fight. In the first case, the long-range air fight, which represents a flight, detection, identification, closing-in. maneuvering and is being performed applying the surveillance and sighting system (SSS) and with medium and long-range missiles. In the second case, close air fight is being carried out under conditions of maneuvering with high-g, fully employing maneuvering capabilities of an aircraft, physical abilities of a pilot and with application of short-range missiles and cannon armament.

Until the moment of target detection herewith by the onboard facilities or visually by a pilot, the task-oriented control of a fighter can be implemented by a higher-level system. The system possesses the information on both the target and the fighter from the ground-based or airborne control points (CP) through the command radio link to bring it to the radar contact with the target.

After the SSS transition to the continuous direction finding" mode, the third stage of the short-range guidance begins. The basic task of this stage consists in bringing the fighter to a certain area of space, which is restricted by maximum and minimum launching ranges of guided missiles and limiting values of the fighter angular coordinates relative to the target. For the short-range guidance, the «direct close-in» method, directed to achieving the final goal of guidance, is widely used as the basic one.

This method assumes that the target is not maneuvering and keeps its movement parameters of constant. The fighter is being guided along a straight-line trajectory to the point of the intended rendezvous. The end of the short-range guidance phase is the fighter’s stationing to the starting position for the attack. The main task herewith consists in ensuring the target lock-on by the missile coordinator or its readiness for launch. Close guidance ends up with the attack of the target, i.e. applying the GM from the allowed launch zone.

In the incomplete instrumentation mode, the SSS performs target tracking only by the angular coordinates. However, the information on maximum and minimum range is necessary for launching conditions computing. The article suggests a technique for the probability assessing of the fighter guidance to the guided missiles launching zone under conditions of incomplete instrumentation. The gist of the technique consists in determining:

— The probability of a target detecting and locking, under condition of absence of interference in accordance with the explicit dependence on time of identification, lock-on, average time the target staying within sight of the SSS, depending on maximum and minimum range, aiming time and relative close-in speed;

— The probability jumping-off in accordance with the formula dependence of the sector width and guidance errors. The fighter and missile maneuverability is being checked herewith, and in case of missile maneuver capability exceedance, the lock-on sector width is being determined in accordance with the expression depending on the missile and fignter angular speed relative to the close-in speed and average lock-on range;

— The root-mean-square guidance error in accordance with the formula dependence on course mean-square deviation and spatial position mean-square deviation of a fighter and a target. Position measuring accuracy herewith is being determined according to the expression, depending on the fighter to target speed ratio, target speed, measuring time and average lock-on range;

— Additionally, the accuracy error of the fighter and target spatial position under conditions of the incomplete instrumentation based on the indirect target movement parameters determining method.

Simulation of process of the fighter guidance to the allowed launches zone under conditions of incomplete instrumentation allowed revealing that at the measuring accuracy of the target spatial position under conditions of instrumentation incompleteness form 2.6 to 7%, the probability of the fighter guidance to the allowed launches zone changes within the limits from 0.7 to 0.4.

Keywords:

conditional probability of short-range guidance, target detection range, maneuverability of a fighter and missile

References

  1. Bystrov R.P., Zagorin G.K., Sokolov A.V., Fedorova L.V. Passivnaya radiolokatsiya: metody obnaruzheniya ob"ektov (Passive radar: objects detecting methods), Moscow, Radiotekhnika, 2008, 320 p.

  2. Il’in E.M., Klimov A.E., Pashchin N.S., Polubekhin A.I., Cherevko A.G., Shumskii V.N. Vestnik SibGUTI, 2015, no. 2, pp. 7 — 20.

  3. Griffiths H.D., Baker C.J. An Introduction to Passive Radar, New York, Artech House, 2017, 110 p.

  4. Ispulov A.A., Mitrofanova S.V. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2017, no. 4, 22 − 29.

  5. Zhitkov S.A., Ashurkov I.S., Zakharov I.N., Leshko N.A., Tsybul’nik A.N. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111392.DOI: 10.34759/trd-2019-109-14

  6. Drogalin V.V., Dudnik P.I., Kanashchenkov A.I. Zarubezhnaya radioelektronika, 2002, no. 3, pp. 64 − 94.

  7. Wang R., Deng Y. Bistatic SAR System and Signal Processing Technology, Springer, 2018, 286 p. DOI:10.1007/978-981-10-3078-9

  8. Boers Y., Ehlers F., Koch W., Luginbuhl T., Stone L.D., Streit R.L. Track before Detect Algorithms, Journal on Advances in Signal Processing, 2008, Article ID 13932. DOI:10.1155/2008/413932

  9. Evdokimenkov V.N., Lyapin N.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105735

  10. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Sostoyanie i tendentsii razvitiya (Aircraft radar watch and guidance systems. State and trends of development), Moscow, Radiotekhnika, 2008, 432 p.

  11. Kiryushkin V.V., Volkov N.S. Teoriya i tekhnika radiosvyazi, 2019, no. 1, pp. 107 − 116.

  12. Bystrov R.P., Sokolov A.V., Chesnokov Yu.S. Vooruzhenie, politika, konversiya, 2004, no. 5, pp. 36 − 40.

  13. Arbuzov I.V., Bolkhovitinov O.V. et al. Boevye aviatsionnye kompleksy i ikh effektivnost’ (Aviation combat systems and their effectiveness), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2008, 224 p.

  14. Veremeichuk G.S., Glushkov V.G., Glushkov O.V., Ivanov V.K. Effektivnost’ boevogo primeneniya aviatsionnykh boevykh kompleksov (Combat application effectiveness of aviation combat systems), Stavropol’, SVVAIU im. marshala V.A. Sudtsa, 2005, 584 p.

  15. Anan’ev A.V., Filatov S.V., Rybalko A.G. Izvestiya TulGU. Tekhnicheskie nauki, 2018, no. 12, pp. 455 — 459.

  16. Zakota A.A., Efanov V.V., Gun’kina A.S. Trudy MAI, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119951. DOI: 10.34759/trd-2020-115-17

  17. Efanov V.V., Zakota A.A., Gun’kina A.S. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=111392. DOI: 10.34759/trd-2021-117-18

  18. Zakota A.A., Efanov V.V. et al. Patent 2549552 RF, MPK7 F41G 7/26, 27.04.2015.

  19. Zakota A.A., Efanov V.V. et al. Patent 2478898 RF, MPK7 F41G 7/26, 27.04.2013.

  20. Zakota A.A., Efanov V.V. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2018660657, 28.08.2018.


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход