The methods of ranking the Earth remote sensing spacecraft to ensure the operational monitoring of emergencies


DOI: 10.34759/trd-2021-119-18

Аuthors

Protsenko P. A.*, Khubbiev R. V.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: prosvka@gmail.com

Abstract

The article discusses the issues of ranking operational monitoring spacecraft of forest fires in order to determine the contribution of each spacecraft to solving the problem of monitoring for focusing the resources of the control complex on the most important spacecraft.

For rapid response to emergencies is necessary to know the situation in the observed area. Since the area is large, it is impossible to fully reconnoiter it with one spacecraft flyby. In this regard, it is proposed to introduce a new criterion — the proportion of the observed area, showing which part of the area there is up-to-date information. Intelligent information about the area is relevant only for a certain period of time, since an emergency situation can arise in the area at any random moment in time. Let us assume that the information about the area is relevant for a deterministic period of time Δτ, those to assess the situation in the area at time t, only the radio visibility zones of the Earth remote sensing spacecraft located in the time range [t–Δτ;t] are taken into account.

Based on the proposed approach to assessing the observability of a given fire-dangerous area, the methods of ranking the Earth remote sensing spacecraft has been developed. The ranking of spacecraft is made taking into account the fact of information obsolescence and the nonlinearity of the area monitoring by a variety of spacecraft. As result of a comparative analysis of existing ranking methods based on the frequency of observation of a given area, and the proposed methodology, the fact of consistency of the results was established. At the same time, the proposed methodology makes it possible to single out that set of spacecraft, the use of which significantly increases the efficiency of monitoring areas of emergencies.

The presented methods can be used to study the capabilities and ranking of both orbital constellations, consisting of the same type of Earth remote sensing spacecraft, and different types.


Keywords:

spacecraft, space monitoring, efficiency, spacecraft ranking

References

  1. Gosudarstvennyi doklad «O sostoyanii zashchity naseleniya i territorii Rossiiskoi Federatsii ot chrezvychainykh situatsii prirodnogo i tekhnogennogo kharaktera v 2019 godu» (State report «On the state of protection of the population and territories of the Russian Federation from natural and man-made emergencies in 2019»), Moscow, MChS Rossii, FGBU VNII GOChS(FTs), 2020, 259 p.

  2. Zheleznyakov A.B. Trudy Vtoroi mezhdunarodnoi nauchnoi konferentsii «Arktika: istoriya i sovremennost’» (Proceedings of the Second International Scientific Conference «Arctic: history and modernity»), Saint Petersburg, Mediapapir, 2017, pp. 234 — 242.
  3. Faleev M.I., Gorbunov S.V., Petelin S.A. Strategiya grazhdanskoi zashchity: problemy i issledovaniya, 2019, vol. 9, no. 1 (16), pp. 14 — 24.
  4. Zverev A.T., Fisenko E.V. Izvestiya vysshikh uchebnykh zavedenii. Geodeziya i aerofotos«emka, 2013, no. 6, pp. 50 — 53.
  5. Vaganov A.A., Neelova O.N., Onufrei A.Yu. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2019, no. 666, pp. 7 — 17.
  6. Khailov M.N., Zaichko V.A. Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii, 2020, no. 1, pp. 6 — 15.
  7. Bakhtin A.A., Omel’yanchuk E.V., Semenova A.Yu. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85828
  8. Stratilatova N.N., Kurenkov V.I., Kucherov A.S., Egorov A.S. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2016, vol. 15, no. 2, pp. 80 — 89. DOI: 10.18287/2412-7329-2016-15-2-80-89
  9. Vyshinskii A.P., Zots M.N., Kolesnik A.V., Ortikov M.Yu. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2019, no. 668, pp. 137 — 144.
  10. Emel’yanov A.A., Malyshev V.V., Smol’yaninov Yu.A., Starkov A.V. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85921
  11. Lokhmatkin V.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93348
  12. Usovik I.V., Darnopykh V.V. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35957
  13. Minakov E.P., Volozhinskii A.O., Aleksandrov M.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2020, no. 9, pp. 168 — 177.
  14. Khantseverov F.R., Ostroukhov V.V. Modelirovanie kosmicheskikh sistem izucheniya prirodnykh resursov (Simulation of space systems for the study of natural resources), Moscow, Mashinostroenie, 1989. 264 p.
  15. Venttsel’ E.S. Vvedenie v issledovanie operatsii (Introduction to Operations Research), Moscow, Sovetskoe radio, 1964, 388 p.
  16. Venttsel’ E.S., Ovcharov L.A. Teoriya veroyatnostei i ee inzhenernye prilozheniya (Probability theory and its engineering applications), Moscow, Nauka, 1988, 480 p.
  17. Venttsel’ E.S. Teoriya veroyatnostei (Probability theory), Moscow, Nauka, 1969, 576 p.
  18. Takha X.A. Vvedenie v issledovanie operatsii (Introduction to Operations Research), Moscow, Izdatel’skii dom «Vil’yams», 2005, 912 p.
  19. Nabor TLE dlya sputnikov. URL: https://r4uab.ru/tle/
  20. NORAD Two-Line Element Sets Current Data Today from The Center for Space Standards & Innovation. URL: https://www.celestrak.com/NORAD/elements/
  21. Kashkin V.B., Sukhinin A.I. Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazhenii (Remote sensing of the Earth from space. Digital imaging), Moscow, Logos, 2001, 134 p.
  22. Shovengerdt R.A. Distantsionnoe zondirovanie. Metody i modeli i metody obrabotki izobrazhenii (Remote sensing. Image processing methods and models), Moscow, Tekhnosfera, 2013, 582 p.
  23. Simakina T.E. Poluchenie i obrabotka sputnikovykh snimkov (Receiving and processing satellite images), Saint Petersburg, RGGMU, 2010, 127 p.

  24. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход