A method for calculating the probability of a bit error of optimal character-by-character coherent reception of binary opposite phase-manipulated signals in the presence of narrowband noise interference in the radio communication channel


DOI: 10.34759/trd-2022-124-15

Аuthors

Ageev F. I.*, Voznuk V. V.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: fedor_a77@bk.ru

Abstract

The article is solving the problem of the bit error probability computing of the optimal character-by-character coherent reception of the opposite phase-manipulated signals (BPSK signals) at the presence of the inadvertent narrowband noise interference. The article considers the Gaussian noise interference with uniform spectrum limited by the frequency band and arbitrary power, entering the pass band of the BPSK signals receiver. Application of the receiver based on either correlator or matched filter tuned to the signal being considered under conditions of the intrinsic noise of the receiver presence only is being understood to in the article as the optimal receiving of the opposite phase-manipulated signals (BPSK signals). Analytical expressions were derived and a technique for computing the bit error probability of the optimal character-by-character coherent receiving of BPSK signals with the presence of both intrinsic receiver noises and narrow band noise interference. The well-known expressions, being used for the probability estimation of the bit errors of the optimal character-by-character coherent reception of the BPSK signals against the background of the white Gaussian noise, form the basis of the obtained relationships. Based on the obtained results, the basic inferences were formulated ,and asymptotic probability estimations of the bit error of the optimal coherent BPSK signals reception at the presence of both intrinsic noise of the receiver and narrow band noise interference for the uttermost narrow band and wide band Gaussian interference were obtained. The article demonstrates the presence of the narrow bane noise interference, which spectrum overlaps the BPSK signal spectrum leads to the noise immunity degradation of the information radio-transmission channel, and the degree of the noise immunity degradation herewith depends drastically on both power, spectrum width and this interference place of location in the BPSK signal spectrum.

Keywords:

binary phase-manipulated signal, probability density, correlation receiver, radio channel noise immunity, white Gaussian noise, narrowband noise interference, bit error probability

References

  1. Voznyuk V.V., Kutsenko E.V. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2018, no. 660, pp. 44–56.
  2. Buchinskii D.I., Voznyuk V.V. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2020, no. 675, pp. 69–76.
  3. Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki (Theoretical foundations of statistical radio engineering), Moscow, Radio i svyaz’, 1989, 656 p.
  4. Zvonarev V.V., Karabel’nikov I.A., Popov A.S. Voprosy radioelektroniki, 2019, no. 3, pp. 49-53.
  5. Baskakov S.I. Radiotekhnicheskie tsepi i signaly (Radio engineering circuits and signals), Moscow, Vysshaya shkola, 2000, 462 p.
  6. Voznyuk V.V., Bogachenkov K.N., Maslakov P.A. Trudy VKA imeni A.F. Mozhaiskogo, 2015, no. 646, pp. 83–92.
  7. Vinokurov V.I., Vakker R.A. Voprosy obrabotki slozhnykh signalov v korrelyatsionnykh sistemakh (Issues of complex signal processing in correlation systems), Moscow, Sovetskoe radio, 1972, 216 p.
  8. Ageev F.I., Vorona M.S., Zvonarev V.V., Popov A.S. Radiotekhnika, 2018, no. 5, pp. 92-99.
  9. Varakin L.E. Sistemy svyazi s shumopodobnymi signalami (Communication systems with noise-type signals), Moscow, Radio i svyaz’, 1985, 384 p.
  10. Ageev F.I., Voznyuk V.V., Khudik M.Yu. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158242 DOI: 10.34759/trd-2021-118-08
  11. Kantor L.A. Sputnikovaya svyaz’ i veshchanie (Satellite communication and broadcasting), Moscow, Radio i svyaz’, 1987, 342 p.
  12. Fink L.M. Teoriya peredachi diskretnykh soobshchenii (Theory of Translation of Discrete Messages), Moscow, Sovetskoe radio, 1970, 728 p.
  13. Tikhonov V.I. Statisticheskaya radiotekhnika (Statistical radio engineering), Moscow, Sovetskoe radio, 1966, 680 p.
  14. Bakeev D.A. Radiotekhnicheskie sistemy peredachi informatsii. Sistemy svyazi. Otsenka tekhnicheskoi effektivnosti radiotekhnicheskikh sistem peredachi informatsii i sistem svyazi (Radio engineering systems of information transfer. Communication systems. Assessment of technical efficiency of radio engineering systems of information transfer and communication systems), Petropavlovsk-Kamchatskii, KamchatGTU, 2006, 69 p.
  15. Mal’tsev G.N., Travkin V.S. Informatsionno-upravlyayushchie sistemy, 2006, no. 5, pp. 32-42.
  16. Mal’tsev G.N., Evteev A.V. Informatsionno-upravlyayushchie sistemy, 2019, no. 3, pp. 105-113.
  17. Maslakov P.A., Parshutkin A.V., Fomin A.V. Trudy Voenno-kosmicheskoi akademii im. A.F.Mozhaiskogo, 2016, no. 651, pp. 78–83.
  18. Agievich S.N., Lutsenko S.A. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie voprosy protivodeistviya terrorizmu, 2018, no. 9-10 (123-124), pp. 132-137.
  19. Zvonarev V.V., Popov A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104213
  20. Borisov V.I., Zinchuk V.M., Limarev A.E., Shestopalov V.I. Pomekhozashchishchennost’ sistem radiosvyazi s rasshireniem spektra pryamoi modulyatsiei psevdosluchainoi posledovatel’nost’yu (Noise immunity of systems of a radio communication with expansion of a range with direct modulation by pseudorandom sequence), Moscow, RadioSoft, 2011, 548 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход