Ablative pulsed plasma thruster for small spacecraft

Aerospace propulsion engineering


D'yakonov G. A.1*, Lyubinskaya N. V.1**, Semenikhin S. A.1*, Khrustaliov M. M.2***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65, Profsoyuznaya str., Moscow, 117997, Russia

*e-mail: riame@sokol.ru
**e-mail: riame3@sokol.ru
***e-mail: mmkhrustalev@mail.ru


Special attention is recently paid to small spacecraft (SSC) with a mass of a few to several tens of kilograms. But for a SSC to become controllable there is a need to develop a highly efficient and compact thruster for the orbit correction and keeping. Appropriate propulsion system should be designed in view of the limitations for mass and power on board. The propulsion system must be lightweight, space-saving and cheap with high efficiency in power consumption of up to about 25 W.
The ablative pulsed plasma thrusters (APPT) are promising for such purposes, as they have several important advantages: instant readiness for operation, extremely low inertia and the almost complete absence of the afteraction pulse, the possibility for precise impulse control, long enough lifetime, as well as the linear variation of the thrust control characteristic.
A family of small APPT models with ultra low energy developed and manufactured at the RIAME MAI is reviewed in the paper. The test results allow considering such thrusters as the most promising for the SSC orbit correction.
A physical-mathematical model developed at the RIAME MAI is presented in the paper also. This model describes operation of the low-energy and low-power APPT. Its computer implementation makes it possible to trace the influence of variations in different input data on the APPT performance. A comparison of theory and experiment revealed good enough agreement of the results.
A set of the electrical circuit parameters (inductance, capacitance) is defined for the ultra-low power APPT, which provide maximum operation efficiency.


plasma acceleration, plasmoid, ablative pulsed plasma thruster


  1. Mueller J. Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies, Progress in Astronautics and Aeronautics, Reston, Virginia, 2000,vol.187, pp. 45-137.
  2. Spanjers G., Bromaghim D., Lake J., Dulligan M., White D., Schilling J., Bushman S. AFRL MicroPPT Development for the TechSat 21 Flight, Proccedings of 27th Intl Electric Propulsion Conference, Pasadena, 2001, IEPC-01-166.
  3. Zakrzwski C., Benson S., Sanneman P., Hoskins A. On-Orbit Testing of the EO-1 Pulsed Plasma Thruster, Proccedings of 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002, AIAA 2002-3973.
  4. Popov G.A., Antropov N.N. Ablative PPT. New Quality, New Perspectives, Acta Astronautica, 2006, vol. 59, pp.175-180.
  5. Antropov N.N., Bogatyi A.V., Diakonov G.A., Orlov M.M., Popov G.A., Tyutin V.K., Yakovlev V.N. Kosmonavtika i raketostroenie, 2008, no. 3, pp. 28-34.
  6. Antropov N.N., Bogatyi A.V., Diakonov G.A., Lyubinskaya N.V., Popov G.A., Semenihin S.A., Tyutin V.K. Vestnik nauchno-proizvodstvennogo ob’ob’edinenia, S.A. Lavochkin, 2011, no. 5, pp. 30-40.
  7. Diakonov G.A., Liubinskaya N.V., Semenihin S.A. Aviacionnaya i kosmicheskaya tehnika i tehnologiya, 2009, vol. 9/66, pp.136-138
  8. Diakonov G.A., Lyubinskaya N.V., Semenikhin S.A. Experimental Studies for Micro-APPT at RIAME, Proc. Second International Conference Scientific and Technological Experiments on Automatic Space Vehicles and Small Satellites, Samara, 2011, 87 p.
  9. Morozov A.I. Fizicheskiye osnovy kosmicheskih electro-reaktivnyh dvigateley (Physical basics of space power jet engines), Moscow, Atomizdat, 1978, 326 p.
  10. Aleksandrov V.A., Belan, Kozlov N.P., Mashtylev N.A., Popov G.A., Protasov Yu.S., Hvesyuk V.I. Impulsnyye plazmennye uskoriteli (Pulsed plasma accelerators), Kharkov, Kharkovskiy aviacionnyi institut, 1983, 247 p.
  11. Vihrev V.V., Zemskov A.I., Prut V.V., Hrabrov V.A. Voprosy fiziki nizkotemperaturnoi plazmy, Minsk, Nauka i tehnika, 1970, pp. 276-282.
  12. Brushlinskiy K.V., Zhdanov N.S. Fizika plazmy, 2008, vol. 34, pp.1120-1128.
  13. Arcimovich L.A., Lukyanov S.Yu., Podgornyi I.M., Chuvatin S.A. Zhurnal eksperimental’noi i tekhnicheskoi fiziki, 1957, vol. 33, no. 1(7), pp. 3-10.
  14. Khrustalev M.M., Lyubinskaya N.V. Calculation Studies for Plasma Parameters in Pulsed Plasma Thruster, Proc. 4th International Space Propulsion Conference, Chia Laguna, Sardinia, Italy, 2004, IEPC-01-106.
  15. Khrustalev M.M., Lyubinskaya N.V. Svidetelstvo o gosudarstvennoy registracii programmy dlya EVM "Fiziko-matematicheskaya model techeniya plazmy v kanale ablyacionnogo plazmennogo dvigatelya s uchetom realnyh processov v razryadnoi cepi dvigately, № 2011614430, 06.06.2011 (Certificate of state registration of computer programs for calculation the physico-mathematical model of the plasma flow in the channel ablative plasma thruster with regard to the real processes in the discharge circuit of the engine, no. 2011614430, 06.06.2011).


mai.ru — informational site MAI

Copyright © 2000-2019 by MAI