Nonlinear Waves in three Coaxial Elastic Cylinderic Shells with Viscous Incompressible Fluid between them

Mathematics. Physics. Mechanics


Аuthors

Blinkov Y. A.1*, Kovaleva I. A.2**, Kuznetsova E. L.3***, Mogilevich L. I.2****

1. Saratov State University named after N. G. Chernyshevsky, 83, Astrakhanskaya str., Saratov, 410012, Russia
2. Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: blinkovua@gmail.com
**e-mail: irinakovaleva1406@gmail.com
***e-mail: vida_ku@mail.ru
****e-mail: mogilevichli@gmail.com

Abstract

The equations which describe the strain waves by means of asymptotic methods for solving the hydro-elastic problem that includes the dynamic equations of three coaxial geometrically nonlinear elastic shells are obtained. Energy dissipation and equations for an incompressible viscous fluid between cylindrical shells with appropriate boundary conditions are taken into account. We obtained equations, which generalize the well-known Korteweg-de Vries equations by introducing the term describing the liquid impact between the shells. The radius of the medial surface of the shell is significantly smaller than the wavelength of deformation, and therefore the asymptotic transition to the classical equation of hydrodynamic lubrication theory is made in the equations of viscous incompressible fluid.
This paper describes the numerical solution to the Cauchy problem for the resulting system of new equation with the influence of the fluid. This approach to the construction of the difference scheme is based on the construction of the predetermined system of differential equations, derived from the integral approximation of conservation laws and the integral relations, connecting the unknown functions and their derivatives. As a result, the difference scheme is defined as a condition for the compatibility for the system and the resulting difference scheme automatically ensures the fulfillment of the integral conservation laws in the areas, made of the basic finite volumes.
The presence of fluid between the co-axial shells gives rise to deformation waves not only in the outer shell but also in the inner ones, where the initial deformation moment is equal to zero. Hence, the deformation wave of stable amplitude and velocity takes place. This fact is in accordance with the solitary wave solution, which cannot be described analytically. The construction under consideration can be characterized as a five layered packet with liquid as a filler.
Consequently, the use of these models allows for a widening of experimental data analysis possibilities in the course of the investigating various systems — fuel supply, cooling for aerospace engineering and etc., which dynamics is principally non-linear.

Keywords:

non-linear waves, coaxial cylinder shells, incompressible liquid, soliton

References

  1. Gromeka I. S. K teorii dvizheniya zhidkosti v uzkikh tsilindricheskikh trubakh (To the theory of movement of liquid in narrow cylindrical pipes), Moscow, AN SSSR, 1952, pp. 149–171.
  2. Kondratov D.V., Kondratova Yu.N., Mogilevich L.I. Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2009, no. 4, pp. 60–72.
  3. Zemlyanukhin A.I., Mogilevich L.I. Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 1995, vol. 3, no. 1, pp. 52–58.
  4. Loitsyanskii L. G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Drofa, 2003, 840 p.
  5. Gorshkov A.G., Medvedskii A.L.,Rabinskii L.N.,Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuous environments), Moscow, Fizmatlit, 2004. pp. 472.
  6. Chivilikhin S.A., Popov V.S., Gusarov V.V. Doklady Rossiiskoi akademii nauk, 2007, vol. 412, no. 2, pp. 201–203.
  7. Popov V.S., Rodygina O.A., Chivilikhin S.A., Gusarov V.V. Pis’ma v ZhTF, 2010, vol. 36, no. 18, pp. 48–54.
  8. Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. Gr ̈obner Bases and Generation of Difference Schemes for Partial Differential Equations, Symmetry, Integrability and Geometry: Methods and Applications, 2006, vol. 2, p. 26, available at: http://www.emis.de/journals/SIGMA/2006/Paper051/index.html
  9. Blinkov Yu.A., Mozzhilkin V.V. Programmirovanie, 2006, vol. 32, no 2, pp. 71–74.
  10. Gerdt V. P., Robertz D. A Maple Package for Computing Gr ̈obner Bases for Linear Recurrence Relations, Nuclear Instruments and Methods in Physics Research, 2006, vol. A559, p. 215–219, arXiv:cs.SC/0509070.
  11. SciPy — URL: http://www.scipy.org/
  12. Blinkov Yu.A., Ivanov S.V., Mogilevich L.I. Elektronnyi zhurnal «Trudy MAI», 2013, no 69, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=43095 (accessed 10.10.2013).
  13. Blinkova A. Yu., Blinkov Yu. A., Mogilevich L. I. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no. 3, pp. 186–195.
  14. Formalev V.F., Kuznetsova E.L. Teplomassoperenos v anizotropnykh telakh pri aerogazodinamicheskom nagreve (Heatmass transfer in anisotropic bodies at aero gasdynamic heating), Moscow, MAI-PRINT, 2011, 300 p.
  15. Kuznetsova E.L. Matematicheskoe modelirovanie teplomassoperenosa v kompozitsionnykh materialakh pri vysokotemperaturnom nagreve v elementakh raketno-kosmicheskoi tekhniki (Mathematical modeling of a heatmass transfer in composite materials at high-temperature heating in missile and space equipment elements), Moscow, MAI-PRINT, 2010, 158 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход