Turbulence modeling issues for supersonic high-temperature jets computation

Fluid, gas and plasma mechanics


Kravchuk M. O.*, Kudimov N. F.**, Safronov A. V.***

Central Research Institute of Machine Building, 4, Pionerskaya st., Korolev, Moscow region, 141070, Russia

*e-mail: xxxmaxxxx3@yandex.ru
**e-mail: nfkudim@tsiimash.ru
***e-mail: avsafron@tsniimash.ru


The paper presents the result of numerical calculation of isothermal and high-temperature turbulent jets based on average Navier-Stocks equations with modified turbulent viscosity model SST. The results of numerical computation were compared with experimental data. This work gives recommendations on using corrections to compressibility and temperature effects.

Correct modeling of supersonic jets is a difficult problem that includes accurate physical modeling of turbulence processes and shock waves. Parameters of isobaric supersonic jets have strong dependence on turbulence models. Thus, in this work we selected isobaric jets to simulate with LES and different RANS turbulent models.

After comparison with experimental data, the following have been detected:

1) k-w SST model with standard Wilcox corrections increases jets potential core length for supersonic high-temperature jets and decrease without these corrections.

2) This drawback for isobaric jets can be fixed by changing critical Mach number of turbulence fluctuations (Mt0), or by using Abdol-Hamid temperature corrections, that include total temperature gradient.

3) Developed recommendations for changing Mt0 depended on total jet temperature when Mach number is around two.

4) LES (WALE) model for isothermal jets have good compliance with experimental data. Though, high-temperature jets LES model increases the scale of turbulence and thus decreases the length of jets potential core.


supersonic jets, turbulence, isobaric jets, jet potential core


  1. Menter F., «Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications». AIAA Journal, Vol. 32, 1994, pp. 1598–1605.

  2. Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, CA 91011, 3rd ed., 2006.

  3. Safronov A.V. Fiziko-khimicheskaya kinetika v gazovoi dinamike 2012, Vol.13, no. 1 : http://chemphys.edu.ru/issues/2012-13-1/articles/305/ — 2012.

  4. Kenzakowski D.C. Turbulence modeling improvements for jet noise prediction using PIV datasets//AIAA-2004-2978, 10th AIAA/CEAS Aeroacoustics Conference and Exhibit, 10-13 May.- 2004.

  5. Kudimov N.F., Safronov A.V., Tretiyakova O.N. Elektronnyi zhurnal «Trudy MAI», 2013, no. 70, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=44440(accessed 25.11. 2013)

  6. Seiner J.M., Ponton M.K., Jansen B.J., and Lagen N.T. The Effect of Temperature on Supersonic Jet Noise Emission// DGLR/AIAA Paper 92-02-046.-1992.

  7. Abdol-Hamid K. S., Massey S. J., and Elmiligui A., «Temperature Corrected Turbulence Model for High Temperature Flow,» Journal of Fluids Engineering, Vol. 126, 2004, pp. 844.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI