Numerical simulation of one-dimensional stationary equilibrium flow in engine detonation

Fluid, gas and plasma mechanics


Аuthors

Gidaspov V. Y.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: gidaspov@mai.ru

Abstract

Physical and mathematical model and computational algorithms for the simulation of chemical equilibrium flow in the nozzle detonation engine in quasi-one-dimensional stationary statement. The case of fuel combustion in stationary detonation wave with the subsequent acceleration of the flow to supersonic speed. Investigated flow regimes allowed under the one-dimensional stationary model. Suggested form of presentation of the results of mathematical modeling in the form of the R-R diagram, which allows for the known input parameters to determine the realized type of flow at different ratios between the radii of the input, critical and exit sections of the channel.

Рис. 1. RR — flow chart stoichiometric hydrogen-air mixture flowing into the channel at supersonic speed (= 400 K, =101325 Pa, the velocity of detonation Chapman-Jouguet resting in the mixture is 1955.1 m/s, 1 — Dimensionless radius locking flow; 2 =1800 m/s, 3 — 1900, 4 — 1955.1; 5 — 2000; 6 — 2200; 7 −2800).

The section AB of the curve 6 corresponds to an overdriven detonation wave in the tapered portion of the channel at the point corresponding to the point B corresponds to the mode of Chapman-Jouguet in critical cross-section . With further decrease in the critical radius of the nozzle, the detonation wave of the Chapman-Jouguet is an expanding part of the channel, 0.5, point C corresponds to 0.2, and < 0.2 is the locking of the thread. It should be noted that for the correctness of the model used, the temperature of the flow front of the detonation wave must be below the Autoignition temperature of the combustible mixture.

Keywords:

numerical simulation of detonation engine, the one-dimensional stationary model, the direct problem of the theory of the nozzle, the equilibrium chemical transformations

References

  1. Аleksandrov V.G., Krayko A.N., Reent K.S. Matematicheskoe modelirovanie, 2003,vol.15, no. 6, pp. 17-26.

  2. Gurvich L.V., Veic I.V., Medvedev V.A. Termodinamicheskie svoistva individual’nykh veshchestv: Spravochnoe izdanie (Thermodynamic properties of individual substances. Reference book), Moskow, Nauka, 1978, 328 p.

  3. Gidaspov V.Yu. Matematicheskoe modelirovanie, 2006, vol. 18, no. 8. pp. 64-76.

  4. Gidaspov V.Yu. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17. no. 6, pp. 72.

  5. Guravskaya T.A., Levin V.A. Mekhanika zhidkosti i gaza, 2012, no. 6, pp. 126-136.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход