Analysis of computational and experimental researches on systems for individual control of the blades of the helicopter

Design, construction and manufacturing of flying vehicles


Animitsa V. A.*, Borisov A. E.*, Kritsky B. S.**, Mirgazov R. M.***

Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

***e-mail: ruslan.mirgazov@tsagi


The article gives a review of methods for individual blade control of the helicopter rotor. Low and high harmonics control features in order to improve aerodynamic performance, reducing vibro g-load and noise of the helicopter were presented.

It is established that one of the directions of works to increase in flight speed is individual blades control of the helicopter rotor, which is the implement for addition control of the blades attack angles, superimposed on standard controls from the collective and cyclic pitch control mechanism. Researches abroad for individual blades control is aimed to reducing vibro g-load and noise of the main rotor, to improve the aerodynamic characteristics of the carrier system and finding ways of rejecting traditional collective and cyclic pitch control mechanism.

Individual blades control of the helicopter rotor can be divided into two components: 1) low harmonics control (rotational frequencies and their overtones) and 2) high harmonics control (blade frequencies pass and their overtones). The purpose of the low harmonics control is to improve the aerodynamic characteristics of the rotor by reducing areas of stall on the retreating blades of the rotor and approach angle of attack sections of the blades for the optimum profile quality. The purpose of the high harmonics control is to reduce vibro g-load and noise of helicopter rotor on the flight modes with large horizontal velocity.

The article describes the different methods used to individual blades control of the helicopter rotor:

  • The control of the high harmonics through the fixed plate swashplate.

  • Individual blades control of MR driven by actuators built into the mechanism of movable rods swashplate.

  • Use active flaps embedded on the trailing edge of the blade with integrated in its design actuators.

  • Use blade with variable twist, actuators inside the blades or built into their hull or spar.

  • Individual blades control of a rotor using two disk plate swashplate.

  • Individual blades control by means of actuators, built-in axial hinges of the rotor hub.

The results of numerical investigation of the influence of individual blade control by azimuth by means of cyclic change of the angle of installation to reduce vibro g-load transmitted to the hub from helicopter main rotor.

The influence of the main (the fifth blade harmonic, for 5 blades rotor) harmonic was investigated. It is established that the selection of the amplitude and phase controls for separate blade is possible to minimize the amount of vibro g-load.


rotors of the helicopter, drive, harmonics, vibro g-load, individual control of the blades


  1. Wood et al.: On Developing and Flight Testing a Higher Harmonic Control System, JAHS, Vol. 30, no.1, pp. 3-20, 1985.

  2. Trailing edge flaps for active rotor control. Aeroelastic Characteristics of the ADASYS Rotor System, Oliver Dieterich, Bernhard Enenkl, Dieter Roth, Dynamics Engineers EUROCOPTER Deutschland GmbH (ECD), Ottobrunn, Germany

  3. Overview of the Novel Intelligent JAXA Active Rotor Program. Shigeru Saito, Noboru Kobiki, Yasutada Tanabe, Wayne Johnson, Gloria K. Yamauchi, Larry A. Young. Presented at Heli Japan 2010, AHS International Meeting on Advanced Rotorcraft Technology and Safety Operations, Ohmiya, Japan, November 1–3, 2010.

  4. OVERVIEW OF THE COMMON DLR/ONERA PROJECT «ACTIVE TWIST BLADE» (ATB). Johannes Riemenschneider, Stefan Keye, Peter Wierach, Hugues Mercier des Rochettes. German Aerospace Center (DLR), French Aeronautics Center (ONERA). 30th European Rotorcraft Forum; 14.09.2004-16.09.2004; Marseilles, France.

  5. Active-twist rotor control applications for uavs. Matthew L. Wilbur and W. Keats Wilkie, U.S. Army Research Laboratory, Vehicle Technology Directorate, Hampton, VA 23681

  6. Actuation concepts for morphing helicopter rotor blades. Boris Grohmann, Christoph Maucher, Peter Janker, Mechatronics and Actuation, EADS Corporate Research Centre, Munchen, Germany

  7. Development of a Piezoelectric Servo-Flap Actuator for Helicopter Rotor Control by Eric Frederick Prechtl, Massachusetts Institute of Technology, May 1994

  8. Development and whirl tower test of the SMART active flap rotor, Friedrich K. Straub, Dennis K. Kennedy, Alan D. Stemple, V.R. Anand, and Terry S. Birchette. The Boeing Company, Mesa, Az 85215, 2004

  9. SMART ROTOR BLADES AND ROTOR CONTROL FOR WIND TURBINES. State of the Art. Knowledge Base Report for UpWind WP 1B3

  10. Aerodynamic Design Study of an Advanced Active Twist Rotor. Martin K. Sekula, Matthew L. Wilbur, William T. Yeager, U.S. Army Vehicle Technology Directorate, NASA Langley Research Center, Hampton, VA 2368.

  11. ACTUATORS FOR SMART APPLICATIONS. Alexandre Paternoster, Andre de Boer Richard, Loendersloot Remko Akkerman. Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2010, September 28 — October 1, 2010, Philadelphia, Pennsylvania, USA

Download — informational site MAI

Copyright © 2000-2021 by MAI