Similarity law in the developed turbulent boundary layer

Aerodynamics and heat-exchange processes in flying vehicles


Аuthors

Ha L. V.

Moscow Institute of Physics and Technology (State University) (MIPT), 16, Gagarin St., Zhukovsky,140180, Russia

e-mail: halevan@mail.ru

Abstract

Developed turbulent boundary layer contains organized vortex structures, which determine various physical properties of the flow. Recent experimental and numerical studies confirm the existence of coherent structures. The flow in the developed turbulent boundary layer is well described by Navier-Stokes system of equations. However, solution of these nonlinear equations presents severe difficulties. One of possible alternative approaches to solve these equations describing the developed turbulent boundary layer is a waveguide model, where a hypothesis for the equality by order of tangential stresses at the side and maximum value of the least damping mode of Tollmien-Schlichting waves decrement value. This hypothesis can be expressed by the equation , which determines the change of the thickness of the boundary layer downstream. Here δ** is pulse thickness loss; and — damping mode of spectral problem least eigenvalue for the Orr-Sommerfeld equation at the turbulent longitudinal velocity profile in the boundary layer; τw — the value of tangential stresses at the side; a — constant determined from the comparison with experimental data.

To do it we, firstly, solve the spectral problem at non-uniform grid for Tollmien-Schlichting equation for vertical component of speed. Here we used numerical integration to transfer differential equation to difference form of second order of accuracy. Such approximation gives us standard matrix, which is solved in «Mathematica» package. Then we will find the δ**(x) dependence, inserting it into the formula, and obtain a. This hypothesis allows separate out the coherent structure and close the moment equations system, determining the average coherent pulsations dynamics and stochastic component spectral density. This work is aimed at the test of this hypothesis.

Keywords:

incompressible viscous fluid, turbulent boundary layer, Orr-Sommerfeld equation, the wave of the least damping mode, non-uniform grid

References

  1. Belotserkovskii O.M., Khlopkov Yu.I., Zharov V.A., Gorelov S.L., Khlopkov A.Yu. Organizovannye struktury v turbulentnykh techeniyakh. Analiz eksperimental’nykh rabot po turbulentnomu pogranichnomu sloyu (Organization structures in turbulent flows. Analysis of experimental works on boundary layer), Moscow, MFTI, 2009, 302 pp.

  2. Borodulin, V.I. Experimental detection of deterministic turbulence / V.I. Borodulin, Y.S. Kachanov, A.P. Roschektayev. Journal of Turbulence, 2011, vol. 12, no. 23, pp.1-34.

  3. Khujadze, G. Coherrentvorticity extraction in turbulent boundary layers using orthogonal wavelets. G. Khujadze. R. Nguyen van yen, K. Schneider, M. Oberlack, Farge M. 13th European Turbulence Conference (ETC-13). Warsaw, Poland, 2011.

  4. Landahl M.T. A wave-guide model for turbulent shear flow. J. Fluid Mech. 1967, vol. 29, Pt.3, pp.441-459.

  5. Zharov V.A. Uchenye zapiski TsAGI, 1986, vol. XVII, no. 5, pp.28-38.

  6. Bogolepov V.V., Zharov V.A.,Lipatov I.I., Khlopkov Yu.I. Prikladnaya mekhanika i tekhnicheskaya fizika, 2002, vol.43, no.4, pp. 65-74.

  7. Vladimir Zharov .Waveguide model of coherent structures in the developed turbulent boundary layer.14th European turbulence conference, 1-4 september 2013, Lyon, France, Book of Abstracts.

  8. Shlikhting G. Teoriya pogranichnogo sloya (Boundary layer theory), Moscow, Nauka, 1974, 711 p.

  9. Repik E.U., Sosedko Yu.P. Turbulentnyi pogranichnyi sloi. Metodika i rezul’taty eksperimental’nykh issledovanii (Turbulent boundary layer. Methodology and experimental studies results), Moscow, Fizmatlit, 2007, 312 p.

  10. Musker A .J . Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA Journal, 1979, vol.17, no. 6, pp.655-657.

  11. Tun T. Trudy MAI, 2010, no. 39: http://www.mai.ru/science/trudy/published.php?ID=14854

  12. Gorelov S.L., Zeya S. Trudy MAI, 2010, no. 39: http://www.mai.ru/science/trudy/published.php?ID=14804

  13. Jordinsson R. The flat plate boundary layer. Part 1. Numerical investigation of the Orr-Sommerfeld equation J. Fluid Mech. 1970, Vol. 43, part 4, pp. 801-811.

  14. Gol’dshtik M.A., Shtern V.N., Gidrodinamicheskaya ustoichivost’ i turbentnost’ (Hydrodynamic stability and turbulence) — Novosibirsk, Nauka, 1977, 366 p.

  15. Mathematica 5.0, Users Guid. Wolfram Research, —2003. URL: http://home.snafu.de/mathema/wolfram/mma_news.htm


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход