Investigation of efficiency of compensation medium effects in a radar

Radiolocation and radio navigation


Аuthors

Ovodenko V. B.*, Trekin V. V.**

Science Research Institute for Long Distance Radio communication, NIIDAR, 10, build.5, 8 March str., Moscow, 127083, Russia

*e-mail: ovodenko@gmail.com
**e-mail: News197@mail.ru

Abstract

It is well-known that the Earth’s lower and upper atmosphere conditions have a significant impact on radio wave propagation. Refraction and time delay are the most important effects in relation to the Ultra High Frequency radar. The improving of the target tracking accuracy requires the accounting of atmospheric effects on the radar operation mode.

The effectiveness of the compensation medium effects on a radar operation is presented in the paper. We have developed a model for calculating atmospheric effects on the radar for its use in near real-time. This model is primarily focused on correcting the effects that are responsible for radar range and elevation angle bias error. Two ways for corrections calculation are considered. The first way is using climatological models for long-term forecast. The second way is based on the real-time updating method of the ionospheric model using slant TEC measurements for short-term forecast.

The two-dimensional ray tracing scheme is applied to calculate corrections. The corrections are provided for the radar in the form of three dimensional look-up tables with 10 min intervals. The each target measurement (range, elevation angle and azimuth) can be corrected for each radar hit.

We have performed a comparison between radar measurement and reference data of the calibration satellite position to make this evaluation. The results of comparison between real radar measurements and reference measurements showed the high efficiency of applying the operational corrections forecast.

The range error decreased by 47.6% and the elevation angle decreased by 65.4% for the long-term forecast. As for operational forecast, only the range error decreased by 82% and the elevation angle remained unchanged.

Keywords:

radar, ionosphere, ionosphere model, updating of ionosphere model, atmospheric error, total electron content

References

  1. Karachevcev A.M. Uspekhi sovremennoi radioelektroniki, 2012, no. 2, pp. 34-38.

  2. Kuriksha А.А., Lipkin А.L. Elektromagnitnye volny i elektronnye sistemy, 2013, vol. 18, no.5, pp.21-26.

  3. Sokolov K.S., Trekin V.V., Ovodenko V.B., Patronova E.S. Uspekhi sovremennoi radioelektroniki, 2012, no. 2, pp. 17-21.

  4. Stephen, M.H.; Sigrid, C. Anthony, V. Equatorial Atmospheric and Ionospheric modeling at Kwajalein Missile Range. Lincoln Laboratory Manual, 2000, 12(1), 45‑64.

  5. Allen, R., D. Donatelli and M. Picardi, «Correction for Ionospheric Refraction for Cobra Dane», AFGL-TR-77-0257, Air Force Geophysics Laboratory, Hanscom AFB MA, 18 Nov 77. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/a053222.pdf

  6. Dulong D.D. Reduction of the uncertainty of radar range correction. NASA STI/Recon Technical Report N 06/1977, аvailable at: http://www.dtic.mil/docs/citations/ADA046166

  7. Pearlman, M.R., Degnan, J.J., and Bosworth, J.M., «The International Laser Ranging Service», Advances in Space Research, Vol. 30, No. 2, pp. 135-143, July 2002, DOI:10.1016/S0273-1177(02)00277-6.

  8. Sokolov К.S., Ovodenko V.B.Sbornik nauchnykh trudov konferentsii RLNC-2011. 2011, vol. 2, pp. 1253 — 1260.

  9. Bilitza D., Reinisch B., International Reference Ionosphere 2007: Improvements and new parameters, J. Adv. Space Res., 42, #4, 599-609, doi:10.1016/j.asr.2007.07.048, 2008

  10. Raschety ballisticheskie iskusstvennykh sputnikov Zemli. Metodika rascheta indeksov solnechnoi aktivnosti, GOST 25645.302-83. (Artificial Earth satellite ballistic computations. Solar activity indexes calculation methods, State standart GOST 25645.302-83), Moscow, Standarty, 1983, 21 p.

  11. Kolosov M.A. Rasprostranenie radiovoln pri kosmicheskoi svyazi (Radiowave propagation in satellite communication), Мoscow, Svyaz’, 1969, 155 pp.

  12. Kobzarev Yu. B. Sovremennaya radiolokatsiya (analiz, raschet i proektirovanie system) (Modern radar (analysis, calculation and system design), Moscow, Sovetskoe radio, 1969, 704 p.

  13. Mikhailov, A. V., B. A. de la Morena, G. Miro, and D. Marin (1999), A method for foF2 monitoring over Spain using the EI Arenosillo Digisonde current observations, Ann. Geophys., 42(4), 683–689.

  14. Shlyupkin A.S. Issledovanie effektivnosti primeneniya mezhdunarodnoi modeli ionosfery IRI-2001 dlya prognozirovaniya kharakteristik VCh radiosvyazi (The study of the effectiveness of IRI-2001 international ionosphere model to predict the HF radio communication), Doctor’s thesis, Rostov na Donu, 2006, 145 p.

  15. Teterin K.A. Geomagnetizm i Aeronomiya, 2013, vol.53, no. 3, pp.354-360.

  16. Gozyumov G.I. Gozyumov G.I. Obzor sostoyaniya i razvitiya sputnikov yustirovochno-kalibrovochnogo klassa (Review of the status and development of the calibration and adjusting satellites), Moscow, Vympel, 1996, 15 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход