Space groupings flight control element structures synthesis

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Matyushin M. M., Lutsenko Y. S.*, Gershman K. E.

Central Research Institute of Machine Building, 4, Pionerskaya st., Korolev, Moscow region, 141070, Russia

*e-mail: lusenko@mcc.rsa.ru

Abstract

The paper is devoted to spacecraft and space groupings control and functioning issues systematical consideration at large. For the first time, the authors present in this paper the structural diagram of the existing spacecraft (space grouping) flight control system, reveal space grouping flight operating control, control tools and control objects. Flight control processes were analyzed within the framework of the existing system, and flight control generic methods shortcomings were considered. The paper is focused on the issues of flight operating control developing and space grouping flight control formation. The paper shows that the adopted nowadays control structure has rather complex arrangement. Besides, flight controls computing and forming space groupings flight control vectors are scattered in space, and each of them computes only the part of the common space groping flight control vector. This, in its turn, leads to the iteration process of flight control vector searching. It does not allow solving the problem of space grouping flight optimization and necessitates multiple conformances. Consequently, the process of flight control vector computing has low efficiency and the occurrence of conflicts when operative treatment of the decision-making personnel is required. Based on the analysis of space grouping flight control procedures the authors proposed new flight operating control structures, allowing increasing its quality. In the authors’ judgment, the last version of space grouping flight operating control structure is the most adequative to modern requirements on the efficiency, cost and reliability of space grouping flight control vector developing, and complies with modern technical capabilities. Space grouping operating control optimality index quantitative analysis can be obtained based on the flight control technologies models. Such models allow developing flight operating control cost estimation, time-dependent and reliability models. The results of the studies on these issues will be presented in subsequent publications.

Keywords:

control system, flight control of the spacecraft and space groups, structure of the system of calculation of parameters of flight control, flight control center, flight control tools

References

  1. Malyshev V.V. Sputnikovye sistemy monitoringa. Analiz, sintez i upravlenie (Satellite monitoring systems. Analysis, synthesis and management), Moscow, MAI, 2000, 568 p.

  2. Volik V.G. Teoriya upravleniya. Terminologiya (Control theory. Terminology), Moscow, Nauka, 1988, 56 p.

  3. Lebedev A.A. Kurs sistemnogo analiza (System Analysis Course), Moscow, Mashinostroenie-Polet, 2010, 254 p.

  4. Dudko A.N., Kucherov B.A., Litvinenko A.O., Sokhrannyi E.P. Kosmonavtika i raketostroenie, 2014, no. 1 (74). pp.155-164.

  5. Deployment of EUTELSAT’s New Generation Constellation Control System (Neo) J.S. Noguero1, S. Reid2, J.C. Gil1, A.P. Honold1, A. Ceballos1 1GMV S.A. Isaac Newton 11, Tres Cantos, 28760, Spain. 2SciSys (Space & Defence) Ltd, Methuen Park, Chippenham, Wiltshire, SN140GB, UK, available at: http://www.google.ru/url?url=http://arc-test.aiaa.org/doi/pdfplus/10.2514/6.2004-313-160&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwiKirC75ZzNAhWJkSwKHblOD4UQFggTMAA&usg=AFQjCNGrpEdtO_uXRVyImha10zu9l8ByPg (accessed 10.06.2016)

  6. GALILEO Constellation Control System R.S. Thompson1, I.R. Brighton2 and C.B. Payne2, 1SciSys, Chippenham, Wilts hire, UK SN14 0GB. 2EADS Astrium Ltd., Portsmouth, UK PO3 5PU. Available at:http://www.google.ru/url?url=http://arc.aiaa.org/doi/pdf/10.2514/6.2004-404-233&rct=j&frm=1&q=&esrc=... (accessed 10.06.2016)

  7. Mission planning for constellations Wayne Harris, Rick Blake, Duncan Woods & Roger Thompson SciSys, Methuen Park, Chippenham Wiltshire SN14 OGB U.K Phone +44(0)1249 466 466; Fax +44(0)1249 466 661; E-Mail wayne.harris@scisys.co.uk Johan Stjernevi ESA, Directorate of Telecommunications, ESTEC, Noordwijk, The Netherlands. Available at:http://arc.aiaa.org/doi/pdf/10.2514/6.2002-T3-04 (accessed 10.06.2016)

  8. JPL’s Multi-Mission Operations Strategy for the Next Decade, Robert K. Wilson, Affiliations: Federal Data Corporation, Jet Propulsion Laboratory, Deputy Manager, Mission Services and Applications Office, Telecommunications and Mission Operations Directorate, Mail Stop 301/250D, 4800 Oak Grove Drive, Pasadena, California 91109-8099 available at: http://www.google.ru/url?url=http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.499.8008%26rep%3Drep1%26type%3Dpdf&rct=j&frm=1&q=&esrc=s&sa=U&ved=0ahUKEwjXkvem6ZzNAhUJZCwKHZeBBZEQFggTMAA&usg=AFQjCNEnnB8Lx0phQyGFZYp4idjWbK6zQQ (accessed 10.06.2016)

  9. Denisov A.A., Kolesnikov D.N. Teoriya bol’shikh sistem upravleniya (The theory of large-scale control systems), Moscow, Energoizdat, 1982, 288 p.

  10. Singkh M., Titli A. Sistemy: dekompozitsiya, optimizatsiya i upravlenie (Systems: decomposition, optimization and control), Moscow, Mashinostroenie, 1986, 496 p.

  11. Darnopykh V.V., Malyshev V.V., Usovik I.V. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 5, pp. 37-52.

  12. Zhigastova O.K., Pochukaev V.N. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no.4, pp. 60-70.

  13. Litvinenko A.O. Trudy MAI, 2016, no. 86: http://www.mai.ru/science/trudy/eng/published.php?ID=67829

  14. Nogov O.A. Trudy MAI, 2013, no.66: http://www.mai.ru/science/trudy/published.php?ID=40269


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход