Transport aircraft development prospects

Design, construction and manufacturing of flying vehicles


Аuthors

Arutyunov A. G.1*, Dydyshko D. V.1**, Endogur A. I.2***, Kuznetsov K. V.1****, Tolmachev V. I.1*****

1. Volga-Dnepr airlines design center, 35, Usacheva, block 1, Moscow, 119048, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: artem.arutyunov@volga-dnepr.com
**e-mail: danil.dydyshko@volga-dnepr.com
***e-mail: endogur@yandex.ru
****e-mail: konstantin.kuznetsov@volga-dnepr.com
*****e-mail: Viktor.Tolmachev@volga-dnepr.com

Abstract

At present, three extensive areas of the transport airplanes, encompassing various types of cargo exist:

— Standardized aircraft containers and pallets transported by freighter aircraft, such as Boeing B-747-400F or Airbus A310-200F;

— Unique cargoes transported by special cargo planes (e. g. Boeing B-747 LCF or Airbus A300-600ST);

— Non-convential industrial cargoes, mechanisms and vehicles transported using airlifters with cargo ramp such as Antonov An-124-100 or Lockheed C-5M.

Specifics of ramp cargo aircraft are as follows:

  1. Special cargo hatches facilitating access to the cargo compartment, but having complicated and weighty structure;

  2. Large fuselage midsection area — about 25 ... 30% greater than that of a passenger aircraft;

  3. Necessity of cargo floor and other airplane parts reinforcement to carry concentrated load;

  4. Necessity of loading height minimization for mobile machinery transportation. Thus, the majority of ramp airlifters are of high-wing monoplane type;

  5. Degradation of the aerodynamic cruise performance as well as the desire to improve takeoff and landing characteristics lead to cruise speed reduction;

  6. Turboprop engines are implemented more often on airlifters than passenger aircrafts to improve their takeoff and landing characteristics;

  7. Transportation of cargoes of various size and functions entails the presence of cargo-handling equipment on board (e. g. cranes, hoists) increasing an airplane weight.

  8. It is advisable to consider development of airlifters in the intermediate-range (6-15 years) and long-range (16-30 years) perspectives.

Specifics of an intermediate-range airplane will be as follows:

— Classic aerodynamic scheme with fuselage, wing and empennage;

— Supercritical wing with a thick airfoil (with average relative thickness of 12 to 13%);

— High aspect ratio (λ ≈ 8.5 ... 9) and moderate sweep angle ( χ ≈ 23 ... 250);

— Relatively simple high-lift devices (e. g. single-slotted or fowler flaps with slats).

For heavy lifters maximum L/D ratio will be about 18...19. Cruise speed of such aircraft will be about 800 km/h. Turbofan engines with high bypass ratio m ≈ 10 and low specific consumption Cp = 0.5 kg/kgf∙h will be used as the power plant of intermediate-range heavy lifters. Airframe weight can be reduced through wide using of composite materials. For intermediate-range aircraft, designers can consider implementation of the unconventional empennage (for example V-tail).

The follwing features probably will be typical for long-range transport aircraft:

— Hybrid wing-body aerodynamic scheme with maximum L/D ratio about 23...24;

— Distributed power plant with low specific consumption about 0.4 kg/kgf∙h;

— Implementation of boundary layer ingestion systems increasing L/D ratio by about 3...5 units.

Keywords:

transport aircraft, cargo ramp, cargo airdrop, cargo compartment, unique oversized cargo, general cargo, ramp cargo plane, special transport aircraft

References

  1. Arutunov A.G., Dydyshko D.V., Kuznetsov K.V. Trudy MAI, 2016, no.89: https://www.mai.ru/science/trudy/published.php?ID=72654

  2. Antonov O.K., Tolmachev V.I. Aviatsiya i kosmonavtika, 1966, no.8, pp. 18-25.

  3. Byushgens G.S. Aerodinamika i dinamika poleta magistral’nykh samoletov (Long-distance aircraft aerodynamics and flight dynamics), Moscow-Pekin, Izdatel’skii otdel TsAGI, 1995, 772 p.

  4. Ofitsial’nyi sait Tsentral’nogo aerogidrodinamicheskogo instituta imeni professora N. E. Zhukovskogo, URL: http://tsagi.ru/pressroom/news/2158/?sphrase_id=13900

  5. Ofitsial’nyi sait kompanii Flexsys, URL: http://www.flxsys.com/flexfoil

  6. Carrier G., Gebhartd L.A. Joint DLR-ONERA Contribution to CFD-based Investigations of Unconventional Empennages for Future Civil Transport Aircraft: CEAS/KATnet Conference on Key Aerodynamic Technologies, Bremen, June, 2005.

  7. Ofitsial’nyi sait zhurnala Aviation Week, URL: http://aviationweek.com/HWB#slide-3-field_images-1348431

  8. Edinoe prostranstvo innovatsii, URL: http://mrgr.org/docs/detail.php?ID=507

  9. Greitzer E.M., Slater H.N. N+3 Aircraft Concept Designs and Trade Studies. Final Report. Cambridge, Massachusetts Institute of Technology, 2010, 183 p.

  10. Endogur A.I. Konstruktsiya samoletov (Aircraft design), Moscow, MAI, 2012, 495 p.

  11. Antufev B.A., Endogur A.I., Pankevich A.A., Samojlovich O.S. Izvestiya vuzov. Aviatsionnaya tekhnika, 1996, no.1, pp. 9-15.

  12. Ugolok neba, URL: http://airwar.ru/enc/xplane/x55.html

  13. Isajkin A.I., Tolmachev V.I. Aerokosmicheskoe obozrenie, 2007, no.5, pp. 18-27.

  14. Tolmachev V.I. Nauka v SSSR, 1986, no.5, pp. 7-14.

  15. Endogur A.I., Kravtsov V.A. Trudy MAI, 2015, no. 81: http://www.mai.ru/science/trudy/published.php?ID=57755

  16. Grishchenko S.V. Trudy MAI, 2015, no. 84: http://www.mai.ru/science/trudy/published.php?ID=63011


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход