Vehicle navigation system accuracy and noise immunity improvement techniques

Navigation instruments


Antonov D. A.1*, Zharkov M. V.1**, Kuznetsov I. M.1***, Tchernodoubov A. Y.2****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,



The main source of navigation information of most known intelligent transportation system (ITS) projects is an on-board satellite navigation system (SNS) GPS-GLONASS receiver. The key feature of SNS consists in positioning accuracy and noise immunity level decreasing in case of operation in compact urban planning due to multipath. The paper analyses the requirements for a vehicle navigation system application as a part of ITS, and estimates functional limitations caused by the features operation specifics in urban environment conditions. Techniques of multipath occurring in dense urban conditions mitigation are also presented.

Today lots of satellite navigation system (as a part of ITS) accuracy and noise immunity improvement techniques exist and being researched at various levels. One of the most prospective approach is an on-board vehicle navigation system design, functioning in ITS, as navigation complex using cooperative information processing techniques form SNS receiver, inertial sensors, odometer measurements and other sensors and vehicle systems. The advantage of this approach is not only the accuracy of vehicle movement parameters improvement but also the possibility to improve fault tolerance by timely detection and exclusion of abnormal measurements from navigation solution, which oftenly occurs in compact urban planning conditions.

The paper discusses accuracy and noise immunity of vehicle navigation system improvement techniques using algorithmic and hardware/software approaches, including complex information processing algorithms. Based on current and prospective requirements to vehicle navigation system accuracy and the existing accuracy and noise immunity improvement techniques analysis, the recommendations for complex fault-tolerant vehicle navigation system design are formulated.

The study was performed under the financial support of Russian Foundation for Basic Research and The government of Moscow as a part of the research project No 15-38-70055. The main part of the research consists in recommendations on complex fault-tolerant vehicle navigation system design formation which should allow system design with declared specification at the next stage of the project using world experience in this area of research.


intelligent transportation system, inertial navigation system, MEMS inertial sensors, satellite navigation system, multipath, optimal information processing, integrated navigation system


  1. Sozdanie intellektual'noi transportnoi sistemy goroda Moskvy, 2016, URL:

  2. Vestnik GLONASS, 2016, URL:

  3. Osnovnaya informatsiya – ERA-GLONASS. Nekommercheskoe partnerstvo “Sodeistvie razvitiyu i ispol'zovaniyu navigatsionnykh tekhnologii”, 2016, URL:

  4. eCall: Time saved = lives saved. European Comission, URL:


  6. OnStar, URL:

  7. Global'naya navigatsionnaya sputnikovaya sistema. Sistema ekstrennogo reagirovaniya pri avariyakh. Avtomobil'naya sistema/ustroistvo vyzova ekstrennykh operativnykh sluzhb. Obshchie tekhnicheskie trebovaniya. GOST R 54620-2011, URL:

  8. PROTOKOL № 1/2015 naturnykh ispytanii NAP s ispol'zovaniem mobil'noi izmeritel'no-diagnosticheskoi laboratorii (MIDL), URL:

  9. Directive 2010/40/EU of the European parliament and of the council, URL:

  10. Development plan for assessment technology of advanced safety vehicle, URL:

  11. Recommendations of the DG eCall for the introduction of the pan-European eCall, URL:

  12. Position Paper – PSAP expert working group on PSAP eCall requirements, URL:

  13. Böhm M., Scheider T. Requirements on vehicle positioning and map referencing for co-operative systems – coopers, ITS World Congress, 2012, 12 p.

  14. E. Arpin V., Shankwitz C., Donath M. A High Accuracy Vehicle Positioning System Implemented in a Lane Assistance System when GPS Is Unavailable, Final report, 2011, URL:

  15. Vehicle Safety Communications – Applications (VSC-A), URL:

  16. Precise Positioning – Automated Driving & Safety Communications, URL:

  17. ISO 11270:2014. Intellektual'nye transportnye sistemy. Sistemy obespecheniya dvizheniya po vydelennoi polose. Trebovaniya k rabochim kharakteristikam i metody ispytaniya, URL:

  18. A lane keeping assist system for passenger cars - design aspects of the user interface, URL:

  19. Autonomous Vehicle Implementation Predictions, URL:

  20. Mezhotraslevoi zhurnal Vestnik GLONASS, 2016, URL:

  21. Google Self-Driving Car Project, URL:

  22. Google Self-Driving Car Project Monthly Report (June 2016), URL:

  23. Model S Software Version 7.0, URL:

  24. Driving autonomously through Nevada, URL:

  25. Bespilotnye gruzoviki v Rossii, URL:

  26. Bespilotnye gruzoviki udaryat po nam ne khuzhe obychnykh, URL:

  27. Annotatsiya k planu meropriyatii (“dorozhnoi karte”) po razvitiyu rynka AvtoNet Natsional'noi tekhnologicheskoi initsiativy, URL:

  28. Groves P.D., Wang L., Walter D., Martin H., Voutsis K., Jiang Z. The Four Key Challenges of Advanced Multisensor Navigation and Positioning, Proc. IEEE/ION PLANS 2014, pp. 773-792.

  29. Wang L., Groves P.D., and M.K. Ziebart. Multi-Constellation GNSS Performance Evaluation for Urban Canyons Using Large Virtual Reality City Models, Journal of Navigation, vol. 65, No. 3, 2012, pp. 459-476.

  30. Groves, P.D., Jiang Z., Wang L., Ziebart M. Intelligent Urban Positioning using Multi-Constellation GNSS with 3D Mapping and NLOS Signal Detection, Proc. ION GNSS 2012, pp. 458 – 472.

  31. Groves P.D., Jiang Z., Height Aiding, C/N0 Weighting and Consistency Checking for GNSS NLOS and Multipath Mitigation in Urban Areas, Journal of Navigation, vol. 66, no. 5, 2013, pp. 653-659.

  32. Groves P.D. Shadow Matching: A New GNSS Positioning Technique for Urban Canyons, Journal of Navigation, vol. 64, 2011, pp. 95–105.

  33. Wang L., Groves P.D., Ziebart M.K. GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring, Proc. ION GNSS 2012, pp. 423 – 437.

  34. Wang L., Groves P.D., Ziebart M.K. Urban Positioning on a Smartphone: Real-time Shadow Matching Using GNSS and 3D City Models, Proc. ION GNSS+ 2013, pp. 1606 – 1619.

  35. Bradbury J. Prediction of Urban GNSS Availability and Signal Degradation Using Virtual Reality City Models, Proc. ION GNSS 2007, Fort Worth, TX, September 2007, pp. 2696-2706.

  36. Groves P.D., Jiang Z., Rudi M., Strode P. A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas, Proc. ION GNSS+ 2013, pp. 3231 – 3247.

  37. Jiang Z., Groves P., Ochieng W.Y., Feng S., Milner C.D., Mattos P.G. Multi-Constellation GNSS Multipath Mitigation Using Consistency Checking, Proc. ION GNSS 2011, pp. 3889 – 3902.

  38. Iwase T., Suzuki N., Watanabe Y. Estimation and exclusion of multipath range error for robust positioning, GPS Solutions, January 2013, vol. 17, Issue 1, pp 53–62, DOI 10.1007s/10291-012-0260-1.

  39. Marais J., Berbineau M., Heddebaut M. Land Mobile GNSS Availability and Multipath evaluation Tool, IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 2005, pp. 1697-1704.

  40. Meguro J., et al. GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera, IEEE Transactions on Intelligent Transportation Systems, vol. 10, No. 1, 2009, pp. 22-30.

  41. Groves P.D. Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems, Second Edition, Artech House, 2013, ISBN-13: 978-1608070053, 800 P.

  42. Bahrami M., Ziebart M. Instantaneous Doppler-Aided RTK Positioning with Single-Frequency Receivers, Proc. IEEE/ION PLANS 2010, Indian Wells, CA, May 2010, pp. 70-78.

  43. Hsu L.-T., Groves P.D., Jan S.-S. Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment, Proc ION Pacific PNT, 2013, pp. 498 – 509.

  44. Spangenberg M., et al. Detection of Variance Changes and Mean Value Jumps in Measurement Noise for Multipath Mitigation in Urban Navigation, Navigation: JION, vol. 57, No. 1, pp. 35 – 52.

  45. Obst M., Bauer S., Wanielik G., Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization, Proc. IEEE/ION PLANS 2012, pp. 685 – 691.

  46. Peyraud S., et al. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm, Sensors, vol. 13, 2013, pp. 829-847.

  47. Bourdeau A., Sahmoudi M., Tourneret J.-Y. Tight Integration of GNSS and a 3D City Model for Robust Positioning in Urban Canyons, Proc. ION GNSS 2012, pp. 1263 – 1269.

  48. Bradbury J., Ziebart M., Cross P., Boulton P., Read A. Code Multipath Modelling in the Urban Environment Using Large Virtual Reality City Models: Determining the Local Environment, Journal of Navigation, vol. 60, 2007, pp. 95–105.

  49. Braasch M.S. Multipath Effects, In Global Positioning System: Theory and Applications Volume I, Parkinson, B. W. and Spilker, J. J., Jr (eds), Washington, DC: AIAA, 1996, pp. 547–568.

  50. Leisten O., Knobe V. Optimizing Small Antennas for Body-Loading Applications, GPS World, September 2012, URL:

  51. Brown A., Gerein N. Test Results from a Digital P(Y) Code Beamsteering Receiver for Multipath Minimization, Proc. ION 57th AM, Albuquerque, NM, June 2001, pp. 872–878.

  52. Keshvadi M.H., Broumandan A., Lachapelle G. Analysis of GNSS Beamforming and Angle of arrival Estimation in Multipath Environments, Proc ION ITM, San Diego, CA, January 2011, pp. 427-435.

  53. Soloviev A., van Graas F. Utilizing Multipath Reflections in Deeply Integrated GPS/INS Architecture for Navigation in Urban Environments, Proc. IEEE/ION PLANS, Monterey, CA, May 2008, p. 383-393.

  54. Xie P., Petovello M.G., Basnayake C. Multipath Signal Assessment in the High Sensitivity Receivers for Vehicular Applications, Proc. ION GNSS 2011, Portland, OR, pp. 1764-1776.

  55. Groves P.D., et al. Context Detection, Categorization and Connectivity for Advanced Adaptive Integrated Navigation, Proc. IONGNSS+ 2013, pp. 1039 – 1056.

  56. Radionavigatsionnyi plan RF, URL:

  57. Leondes K.T. Fil'tratsiya i stokhasticheskoe upravlenie v dinamicheskikh sistemakh (Filtering and stochastic control in dynamic systems), Moscow, Mir, 1980, 408 p.

  58. Mubarak O.M., Dempster A.G. Analysis of Early Late Phase in Single- and Dual-Frequency GPS Receivers for Multipath Detection, GPS Solutions, vol. 14, no. 4, 2010, pp. 381-388.

  59. Mattos P.G. Multipath indicator to enhance RAIM and FDE in GPS/GNSS Systems, Patent Application No. 11112819.5, Filed July 2011.

  60. Valaitite A.A., Nikitin D.P., Sadovskaya E.V. Trudy MAI, 2014, no. 77:

Download — informational site MAI

Copyright © 2000-2019 by MAI