Validation of Logos – CFD solver of rigid body motion under action of airflow

Mathematica modeling, numerical technique and program complexes


Tannenberg I. D.*, Ramazanov R. F.**

Experimental Design Bureau "Sukhoi", 23B, Polikarpov str., p/b 604, Moscow, 125284, Russia



This paper is based on results of experimental study in which the motion of various plates and shapes under the air flow action was carried out.

Task calculation of free motion in plate flow on russian software Logos-CFD was considered to determine body motion path. Plates possess 12 inch (12″) and 6 inch (6″) in length, 6 inch in width and 0.4 inch in thickness. Calculation results are compared with motion paths getting as test results on the wind tunnel as well as with Monte-Carlo calculation method.

Solver settings were sel ected fr om task solution experience of rigid body motion in air flow. Solver used overlapping grid possibilities as the most fast and stable simulation method of Euler grids joint motion. The task was calculated by SA All Y + turbulence model using AUSMPW scheme of convection flow splitting on the 2nd approximation order.

Calculations were carried out in multiple-access computing center RENC-VNIIEF.


— In three of four calculations adequate agreement of plate motion paths were obtained as compared to the test;

— Calculation method on CFD enabling of Euler grids mutual motion gains significantly versus describing [4] motion path calculating according to Monte-Carlo method;

— The accuracy of vertical square plate calculation can be improved by means of DDES of unsteady vortexes and by wind tunnel path simulation;

— We can conclude that it is advisable to use Logos-CFD for motion path calculation under action of subsonic flow without initiation of detached flows.


CFD, rigid body motion calculation, validation, supercomputer computations, icing, Logos, overlapping grids


  1. Hadzic H. Development and application of Finite Volume Method for the Computation of Flows Around Moving Bodies on Unstructure, Overlapping Grids. Hamburg: Technische Universität Hamburg — Harburg, 2005:

  2. Roache P.J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa, 1998. 446 pp.

  3. Vershkov V.F., Voronich I.V., Vyshinskii V.V. Trudy MAI, 2015, no. 82:

  4. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82:

  5. Papadakis M., Yeong H.W., Shimoi K., Wong S.H. Ice Shedding Experiments with Simulated Ice Shapes Wichita State University // 1st AIAA Atmospheric and Space Enviroments Conference. Wichita. Kansas (USA). 2008,

  6. Tenishev R.Kh., Stroganov B.A., Savin V.S., Kordinov V.K., Teslenko A.I., Leont’ev V.N. Protivoobledenitel’nye sistemy letatel’nykh apparatov (Deicing systems of aircrafts), Moscow, Mashinostroenie, 1967, 320 p.

  7. Meshcheriakova T.P. Proektirovanie sistem zashchit` samoletov i vertoletov (Design of defence systems for aircrafts and helicopters), Moscow, Mashinostroenie, 1977, 232 p.

  8. Trunov O.K. Obledenenie samoletov i sredstva bor`by s nim (Aircraft icing and measures of icing control), Moscow, Mashinostroenie, 1965, 248 p.

  9. Aviatcionnye pravila — Chast` 25. OAO «AVIAIZDAT». version 3:

  10. Certification of Transport Category Airplanes for Flight in Icing Conditions. Federal Aviation Administration, 2004.

  11. Papadakis M., Yeong H.W., Shimoi K. Parametric Investigation of Ice Shedding from a Business Jet Aircraft // Aircraft & Engine Icing International Conference. 2007. SAE Paper 2007-01-3359.

  12. Chandrasekharan R., Hinson M. Trajectory Simulation of Ice Shed from a Business Jet // SAE World Aviation Congress and Exposition. 2003. SAE-2003-01-3032.

  13. Tannenberg I.D., Ermakova Yu.E. Materialy XV Mezhdunarodnoi konferentsii «Supervychisleniya i matematicheskoe modelirovanie», 2014, Sarov, p. 127.

Download — informational site MAI

Copyright © 2000-2020 by MAI