Photo-ionization cross sections xenon data

Fluid, gas and plasma mechanics


Аuthors

Skorokhod E. P.

e-mail: e.p.skorohod@mail.ru

Abstract

Physical — chemical radiation plasma-dynamics promptly developing field of science finding application at the solution of problems of engine building of the space-rocket industry. In [1-9, 14-16] the special attention is paid to computer creation of optical models of gases and the plasmas intended for the solution of problems of radiation plasma-dynamics. Such constructions are based on quantum-mechanical calculations, these or those approximations and semiclassical generalizations of elementary radiation processes. In work [3] for mass calculations the so-called optical model of the environment was formulated. It is necessary to emphasize that in this treatment temperature of the environment and radiation is supposed the general, the Sakha and Boltsman local thermodynamic equilibrium (LTE) is used [6]. In our works [7-8, 14-16] kinetic approach was considered. Constants of different plasma chemical reactions are necessary for this purpose.

For reaction of photo-ionization process ,

( – concentration of excited state, – a photon energy, – ions concentration) consideration begins with the simplest model of hydrogen and record of matrix elements that is useful for the beginning reader. Calculations of photo-ionization cross sections for hydrogen atom are given. There are Kramers approach [12] for other more difficult atoms, with replacement of the main quantum number by effective quantum number , где — the potential of atom’s ionization of is used. Values of effective quantum number are given for atom Xe.

The method of quantum defect is considered in details [7]. Results of calculation of photo-ionization cross sections for xenon (the maximum value in a threshold) are given in the table.

The maximum values of photo-ionization cross sections

Xe (in units 10- 18 cm2).

Results of calculation of photo-ionization cross sections for xenon are given on the figure. For the purpose of simplification in case of mass calculations some simplified treatment with use of a formula of Kramers is specified.

Keywords:

Xe plasma, photo-ionization cross section, method of quantum defect

References

  1. Surzhikov S.T. Opticheskie svoistva gazov i plazmy (Optical properties of gases and plasma), Moscow, MGTU im. N.E. Baumana, 2004, 575 p.

  2. Chernogo G.G., Loseva S.A. Fiziko-khimicheskaya kinetika i termodinamika (Physical — chemical kinetics and thermodynamics), Moscow, NITs mekhaniki, 2002, 368 p.

  3. Surzhikov S.T. Teplovoe izluchenie gazov i plazmy (Thermal radiation of gases and plasma), Moscow, MGTU imeni N.E. Baumana, 2004, 546 p.

  4. Gavrilova A.Yu., Kiselyov A.G., Skorokhod E.P. Teplofizika vysokikh temperatur, 2014, vol. 52, no.2, pp. 174-185.

  5. Spravochnik konstant elementarnykh protsessov s uchastiem atomov, ionov, elektronov, fotonov (The reference book of constants of elementary processes with participation of atoms, ions, electrons, photons), Sankt-Peterburg, Sankt-Peterburgskii gosudarstvennyi universitet, 1994, 336 p.

  6. Griem H. Spektroskopiya plazmy (Plasma Spektroskopy), Moscow, Atomizdat, 1969, 452 p.

  7. Skorokhod E.P. Opticheskie svoistva nizkotemperaturnoi ksenonovoi plazmy (Optical properties of low-temperature xenon plasma), Doctors thesis, Moscow, 1983, 185 p.

  8. Skorokhod E.P. Spektroskopicheskie metody issledovaniya fiziko—khimicheskikh i teplovykh protsessov v plazmennykh ustroistvakh (Spectroscopic methods of research of physical and chemical and thermal processes in plasma devices), Doctor thesis, Moscow, 2003, 322 p.

  9. Kiselyov A.G., Skorokhod E.P. Trudy MAI, 2011, no. 49: https://www.mai.ru/science/trudy/published.php?ID=28183

  10. Semiokhin I.A. Elementarnye protsessy v nizkotemperaturnoi plazme (Elementary processes in low-temperature plasma), Moscow, MGU, 1988, 142 p.

  11. Karpushkina E.I., Grechukhin D.P. of J. Nucl. Energy, Part C. V.6, 1964, p. 631.

  12. Lokhte-Holtgreven’s. Metody issledovaniya plazmy (Methods of plasma research), Moscow, Mir, 1971, 552 p.

  13. URL: http://physics.nist.gov; Atomic Physics; Atomic Spectra Database.

  14. Gavrilova A.Yu., Skorokhod E.P. Secheniya i konstanty skorostei plazmokhimichekskikh reaktsii inertnykh gazov (Cross sections and speeds constants for plasma-chemical reactions of inert gases), Moscow, MAI, 2011, 192 p.

  15. Voynitskiy S.O., Skorokhod E.P. Trudy MAI, 2012, no. 50: https://www.mai.ru/science/trudy/published.php?ID=28694

  16. Gavrilova A.Yu., Kuly-zade M.E., Skorokhod E.P. Trudy MAI, 2012, no. 50: https://www.mai.ru/science/trudy/published.php?ID=28604

  17. Gidaspov V.Yu., Moskalenko O.A. Trudy MAI, 2016, no. 90: http://www.mai.ru/science/trudy/published.php?ID=74647

  18. Gidaspov V.Yu. Trudy MAI, 2011, no. 49: http://www.mai.ru/science/trudy/published.php?ID=28605&PAGEN_2=3

  19. Gidaspov V.Yu. Trudy MAI, 2015, no. 83: http://www.mai.ru/science/trudy/published.php?ID=61826


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход