Features of using functionally redundant accelerometer blocks in strapdown navigation and gravimetric complexes

Navigation instruments


Аuthors

Tiuvin A. V., Afonin A. A.*, Sulakov A. S.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kaf305-mai@mail.ru

Abstract

This article deals with questions of strapdown graviinertial complex (BGK) efficient version design, redundant structure of its primary information sensors and advanced functional operation algorithm, making it possible to achieve sufficient accuracy of vector gravimetric measurements and determine the orientation and navigation parameters. The purpose is achieved through the use of functionally redundant blocks of inertial sensors, as well as through evaluation and correction of errors of inertial and satellite components of complex navigation system directly in the gravimetric survey.

Functional algorithm is based on the basic equation of the inertial navigation with the use of optimal Kalman filtering methods in the case of a tightly coupled structure of a complex navigation system. The technique of functionally redundant blocks inertial sensors data treatment is presented.

The listed mathematical expression are showing that an increase in the number of block units increases strapdown graviinertial complex accelerometers accuracy.

A method of selecting a rational design of the accelerometers block with cone structure is describe. It is indicated that, in general, the best half-angle of the cone depends on the ratio of measurer statistical error model coefficients and the value of the measured vector.

Calculations of inertial measurement unit with cone structures optimal configurations have shown that increasing the level of inertial measurement unit redundancy increases considered technical solution efficiency. For example, compared with the three sensors inertial measurement unit, in the case of four sensors influence the random error can be reduced by 14%, for the five sensors — 23%, six — 29%.

Keywords:

strapdown graviinertial complex, functionally redundant block, optimal estimation, vector gravimetric measurements, functional algorithm

References

  1. Proceedings of the 4th Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2016). Publisher Polytechnic University, St. Petersburg, 2016, 220 p, ISBN 978-5-91995-033-2.

  2. J. Vendul, E.E. Klingele. Airborne gravimetry using a strapped-down LaCoste and Romberg air/sea gravity meter system. Geophysical prospecting, 2005, 53, pp. 91-101.

  3. Berzhitskii V.N., Ermakov M.A., Il’in V.N., Smoller Yu.L., Yurist S.Sh., Bolotin Yu.V., Golovan A.A., Parusnikov N.A., Gavrov E.V., Rekunov D.A., Fedorov A.E., Gabell A., Olson D., Shabanov A.V. Trudy mezhdunarodnogo simpoziuma «Nazemnaya, morskaya i aerogravimetriya: izmereniya na nepodvizhnykh i podvizhnykh osnovaniyakh», St. Petersburg, 2010, pp. 90-92.

  4. Yangming Huang, Arne Vestergaard Olesen, Meiping Wu and Kaidong Zhang. SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors (Basel), 2012; 12(7), pp. 9336-9348, doi: 10.3390/s120709336.

  5. Bolotin Yu. V., Vyaz’min V. S., Golovan A. A. Materialy 9-i Rossiiskoi mul’tikonferentsii po problemam upravleniya. St. Petersburg, 2016, pp. 354–365.

  6. D. Becker, M. Becker, A.V. Olesen, J.E. Nielsen, R. Forsberg. Latest Results in Strapdown Airborne Gravimetry Using an iMAR RQH Unit. Proceedings of the 4th Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2016). Publisher Polytechnic University, St. Petersburg, 2016, pp. 125-128.

  7. K. Zhang, M. Wu, J. Cao, Sh. Cai. Preliminary Results of the Strapdown Airborne Gravimeter SGA-WZ02. Proceedings of the 4th Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2016). Publisher Polytechnic University, St. Petersburg, 2016, pp. 75-78;

  8. Tyuvin A.V., Afonin A.A., Chernomorskii A.I. Aviakosmicheskoe priborostroenie, 2005, no.3, pp. 1-5.

  9. Afonin A.A., Sulakov A.S., Yamashev G.G., Mikhailin D.A., Mirzoyan L.A., Kurmakov D.V. Trudy MAI, 2013, no. 66: https://www.mai.ru/science/trudy/published.php?ID=40812

  10. Afonin A.A., Sulakov A.S. Mekhatronika, Avtomatizatsiya, Upravlenie, 2013, no. 4, pp. 62-68.

  11. Rivkin S.S. Metod optimal’noi fil’tratsii Kalmana i ego primenenie v inertsial’nykh navigatsionnykh sistemakh (Obzor otechestvennoi i zarubezhnoi literatury). (Kalman optimal filtering method and its use in inertial navigation systems (Review of Russian and foreign literature)), Saint Petersburg, Sudostroenie, 1973, 144 p.

  12. Savinov G.F. Primenenie metodov optimal’noi fil’tratsii pri postroenii navigatsionnykh kompleksov (The using of optimal filtering methods in the construction of navigation systems), Moscow, MAI, 1980, 73 p.

  13. Andreev V.D. Teoriya inertsial’noi navigatsii. Avtonomnye sistemy. (Inertial navigation theory. Autonomous systems), Moscow, Nauka, 1966, 579 p.

  14. Vodicheva L.V., Lystsov A.A., Parysheva Yu.V. XXIII Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam. Sbornik materialov, St. Petersburg, 2016, pp. 78-80.

  15. Aleshin B.S., Tyuvin A.V., Chernomorskii A.I., Plekhanov V.E. Proektirovanie besplatformennykh inertsial’nykh navigatsionnykh sistem (Strapdown inertial navigation systems design), Moscow, MAI-PRINT, 2010, 378 p.

  16. Epifanov A.D. Izbytochnye sistemy upravleniya letatel’nymi apparatami (Excessive aircraft control system), Moscow, Mashinostroenie, 1978, 144 p.

  17. Tyuvin A.V. Trudy MAI, 2013, no. 71: https://www.mai.ru/science/trudy/published.php?ID=47071.

  18. Tyuvin A.V., Dmitrochenko L.A. Author’s certificate 795181, 1980.

  19. Afonin A.A., Tyuvin A.V., Sulakov A.S. Mekhatronika, avtomatizatsiya, upravlenie, 2014, no. 12, pp. 42-52.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход