Excited state population density and spontaneous emission probabilities ХеI plasma of Hall Thruster

Fluid, gas and plasma mechanics


Krivoruchko D. D.*, Skrylev A. V., Skorokhod E. P.**

Moscow Institute of Physics and Technology, 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

*e-mail: daria.krivoruchko@phystech.edu
**e-mail: e.p.skorohod@mail.ru


In the bginning of the paper a low-temperature xenon plasma of Hall Thruster (HT) was investigated by spectroscopic measurements in the 250‒1100 nm range. More than 50 xenon atoms (Xe I) transitions were explored. A measure light power emitted by the plume at optical range was found to be about 0,5 W.

The spontaneous emission probabilities (Einstein coefficients) for xenon atom were calculated at the Coulomb approximation (~800 transitions). The obtained results were compared with the results of other authors. By analysis the Hall thruster spectrum Xe I excited state concentrations were identified for 25 terms use getting Einstein coefficients.

According to Maxwell’s electrons and Boltzmann distribution the value of excited state concentrations as a function of their energy is a line with line inclination equal to , where – ionization potential from ground state. However, the obtained excited state distribution is poorly approximated by linear dependence and more resembling «swarm» distribution. Measured spectral lines intensities have little differences for each location of collection optics. That could be conditional on heterogeneity of HT plume. However, the mode of the excited state population density persist. That gives evidence of plasma beyond the thruster exit plane common character and unfitness local thermodynamic equilibrium or Coronal model for describe HT plume plasma. In other words, one needs multilevel kinetic model allowing calculate excited state population density which agrees with experimental results for identification electron and nuclear temperature and concentrations.


xenon, phototransition probabilities (Einstein coefficient) XeI, Hall Thruster excited plasma states concentraions


  1. Grim G. Spektroskopiya plazmy (Plasma Spectroskopy), Moscow, Atomizdat, 1969, 452 p.

  2. Lokhte — Khol’tgrevena. Metody issledovaniya plazmy (Methods of plasma study), Moscow, Mir, 1971, 552 p.

  3. Gavrilova A.Yu., Kiselyov A.G., Skorokhod E.P. Teplofizika vysokikh temperatur, 2014, vol. 52, no.2, pp.174-185.

  4. Voynitskiy S.O., Skorokhod E.P. Trudy MAI, 2012, no.50: http://www.mai.ru/science/trudy/eng/published.php?ID=28694

  5. Gavrilova A.Yu., Kuly-zade M.E., Skorokhod E.P. Trudy MAI, 2012, no: http://www.mai.ru/science/trudy/eng/published.php?ID=28604

  6. Bugrova А.I., Ermolenko V.А., Kalihman L.Е. Teplofizika vysokikh temperatur, 1979, vol. 17, no.5, pp. 916-921.

  7. Skorokhod E.P. Spektroskopicheskie metody issledovaniya fiziko—khimicheskikh i teplovykh protsessov v plazmennykh ustroistvakh (Spectroscopic methods of physicochemical and thermal processes studies in plasma installations), Doctor’s thesis, Moscow, MAI. 2003, 120 p.

  8. Gavrilova A.Yu., Kiselyov A.G., Skorokhod E.P. Teplofizika vysokikh temperatur, 2016, vol. 54, no.2, pp.171-179.

  9. Vainshtein L.A, Sobelman I.I., Yukov Е.А. Secheniya vozbuzhdeniya atomov i ionov elektronami (Sections for atoms and ions excitation by electrons), Мoscow, Наука, 1973, 143 p.

  10. Gavrilova A.Yu., Skorokhod E.P. Secheniya i konstanty skorostei plazmokhimicheskikh reaktsii inertnykh gazov (Cross sections and speed constants for plasma-chemical reactions of inert gases), Moscow, Izd-vo MAI, 2011, 192 p.

  11. Miller M.H., Roig R.A. Transition Probabilities of Xe I and Xe II // Phys. Rev., 1973, A8, p. 480-487.

  12. Davis C.C., King T.A. Upper Level Lifetimes of High-gain Laser Transitions in Xe // Phys. Letters, 1972, A39, p. 186-189.

  13. Chen C.J., Garstang R.H. Note Transition Probabilities for Xe I // J. Quant. Spectr. Radiat. Transf., 1970, 10, p. 1347-1351.

  14. Loginov A.V. Radiatsionnye vremena zhizni urovnei v spektrakh atomov inertnykh gazov i izoelektronnykh ionov (Radiation lifespans in inert gages atoms’ spectrum), Doctor’ s thesis, Leningrad, 1975, 183 p.

  15. Aymar M., Coulombe M. Theoretical transition probabilities and lifetimes in Kr I and Xe I. Atom. Data Nucl. Data Tabl, 1978, v.21, N 6, pp. 537-566.

  16. Zemtsov Yu.K., Skorokhod E.P. Mezhvuzovskii sbornik trudov «Elementarnye protsessy pri stolknoveniyakh atomnykh i molekulyarnykh chastits.» Cheboksary, ChGU, 1987, pp. 18-27.

  17. Gorchakov L.V., Dyomkin V.P., Muravyov I.I., Yancharina А.М. Izluchenie atomov inertnykh gazov v elektricheskikh polyakh (Inert gas atoms in electric fields radiation), Tomsk, TGPU, 1984, 167 p.

  18. Gruzdev P.F. Veroyatnosti perekhodov i radiatsionnye vremena zhizni urovnei atomov i ionov (Transition Probabilities for Atoms and Atomic Ions). Moscow, Energoatomizdat, 1990, 223 p.

  19. Wiese, W.L. and Martin, G.A., «Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part II: Transition Probabilities,» United States National Bureau of Standards NSRDS-NBS 68, 1980.

  20. Martin, P., Cabrera, J.A., and Campos, J., «TransitionProbabilitiesof 6p-nd (n=7,8,9) Lines of XeI,» Phys Rev A, Vol 32, No 5, 1985, p 3110.

  21. Peraza, C., Martin, P., and Campos, J.,"Transition Probabilitiesof 6p-ns (n=7,8,9,10,I1,12,13) Lines of Xe(’I),«JQSRT, Vol 46, 1991, p 455

  22. Sadeghi, N. and Sabbagh, J., «Collisional Transfer Between the 6s’[l/2]0j and 6p[1/2]] Xenon Levels,» Phys Rev A, Vol 6, No 6, 1977, p 2336

  23. Gusev Yu.G., Pil’nikov A.V. Trudy MAI, 2012, no. 60: http://www.mai.ru/science/trudy/eng/published.php?ID=35385

  24. Potapenko M.Yu. Trudy MAI, 2014, no. 74: http://www.mai.ru/science/trudy/eng/published.php?ID=49261

  25. Ostrovskii V.G., Smolentsev A.A., Sokolov B.A. Trudy MAI, 2012, no. 60: http://www.mai.ru/science/trudy/eng/published.php?ID=35380


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI