Analysis of ultrasound parameters for a spaceman bone tissue regeneration during long-term space missions

Medical purpose instruments, systems and products


Belozerova I. N.*, Kudriavtseva N. S.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The paper discusses mathematical modeling, analysis and parameters selection of ultrasonic interaction with a spaceman’s injured bone tissue to accelerate its regeneration during long-term missions.

The authors developed a mathematical model of ultrasonic interaction with multi-layer system of a biological human tissue based on reflection of the mechanical ultrasonic energy at the boundaries, such as “soft tissue — cortical bone tissue”, “cortical tissue — trabecular bone tissue”, “trabecular bone tissue — bone marrow tissue”.

Mechanical ultrasonic elastic stresses of biological cells in the bone tissue such as displacement amplitude (deformation) and shear forces on the cells of cortical bone that stimulate regeneration of the cortical bone tissue without causing cells destruction and cellular organelles were computed.

The temperature gradients in the cortical bone were computed to evaluate thermal effects of ultrasound on biological cells.

Finally, the recommended parameters of ultrasonic exposure for accelerated regeneration of a spaceman’s cortical bone tissue: intensity of ultrasonic source: I0 = 0,05 — 0,1 W/cm2, the oscillation frequency f = 0,02 — 0,1 MHz, the duration of continuous exposure shall not exceed 10 minutes were elaborated. Moreover, the weight of a spacecraft life-support system will not be increased as the ultrasonic device is already a part of the medical and technical equipment onboard the orbital station.

The presented study is the first one to offer implementation of ultrasound with the parameters selected to accelerate a spaceman injured bone tissues regeneration during long-term missions.


frequency, intensity of ultrasonic waves, bone tissue, long-term space missions


  1. Oganov V.S. Fiziologiya cheloveka, 2003, vol. 29, no. 5, pp. 29-38.

  2. Oganov V.S., Bakulin A.V., Novikov V.E., Murashko L.V., Kabitskaya O.E. Osteoporoz i osteopatia, 2005, no. 1, pp. 2-6.

  3. Hill C.R. Primenenie ultrazvuka v medicine: Fizicheskie osnovi (Ultrasonics implementation in medicine: Principal physics), Moscow, Mir, 1989, 568 p.

  4. Akopyan V.B., Ershov U.A. Osnovi vzaimodeistvia ultrazvuka s biologicheskimi obiektami (Basics of ultrasonics interaction with biological payload), Moscow, Bauman MSTU, 2005, 224 p.

  5. Ivashenko S.V., Berlov G.A. Medisinskii jurnal, 2007, no. 4, pp. 67-70.

  6. Pilla A.A., Mont M.A., Nasser P.R., Khan S.A. Non-invasive Low Intensity Pulsed Ultrasound Accelerates Bone Healing in the Mouse. J. Orthopaed, Trauma, 1990, no. 4, pp. 246-253.

  7. Reher P., Elbeshir E.N., Harvey W. The Simulation of Bone Formation in Vitro by Therapeutic Ultrasound, Ultrasound Med. Boil, 1997, pp. 1251-1258.

  8. Heckman, J. D. M. D., et al. Acceleration of Tibial Fracture-Healing by Non-Invasive, Low-Intensity Pulsed Ultrasound, The Journal of Bone and Joint Surgery, 1994, vol. 76-A, no. 1, pp. 26-34.

  9. Duck F.A., et al. Physical Properties of Tissue: A Comprehensive Reference Book. Chapter 4. London: Academic Press. 1990, pp. 73-135.

Download — informational site MAI

Copyright © 2000-2022 by MAI