Compressor mechanization control of gas-turbine engine using his simulation model

Thermal engines, electric propulsion and power plants for flying vehicles


Gurevich O. S.1*, Gol'berg F. D.1**, Zuev S. A.1***, Busurin V. I.2****

1. Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia
2. ,



Basically, the control of modern gas-turbine engines is carried out according to variables which implicitly describe engine basis characteristics, such as a value of thrust, a specific fuel consumption and so on, because their measurability is out of contact. Hardware development of digital automatic control systems (ACS) has broken new ground for an engine control, health monitoring and diagnostic. It has become possible to bring into ACS software (SW) sufficiently detailed simulation model «virtual engine» and calculate unmeasurable engine critical parameters with high fidelity while in engine operation.

The article describes new principles of based on such SW control of high-pressure compressor mechanization, which is adaptable to engine operating conditions — closed loop control of guide vanes angle and air bleed valve position according to calculated values of compressor stall margin and efficiency, along with controlling according to excess air ratio in the combustor chamber. A functional block-diagram and heart of software of such control system have been developed in respect to modern turbofan engine with high bypass ratio.

As a result of accomplished researches it was shown that using of new control methods may allows:

— decrease specific fuel consumption without sacrificing required value of thrust on cruise modes;

— decrease up to 10% spent stall margin of HPC during acceleration;

— decrease by 5...10% spent stall margin of LPC add stage and decrease by a factor of 1,5...2 maximum values of excess air ratio in order to keep steady combustion in the combustor chamber.


automatic control system, gas-turbine engine, compressor mechanization, virtual engine


  1. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58, available at:

  2. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Sistemy avtomaticheskogo upravleniya aviatsionnymi gazoturbinnymi dvigatelyami (Automatic control systems of aircraft gas turbine engines), Moscow, TORUS PRESS, 2010, 264 p.

  3. Sanjay G., Kumar A., Mathews H.K., Rosenfeld T., Rybarik P., Viassolo D.E. Intelligent control and health monitoring. More Intelligent Gas Turbine Engines, Cleveland, 2009, part 3, 178 p.

  4. Litt J.S., Simon D.L., Garg S., Ten-Heui Guo, Mercer C., Millar R., Behbahani A., Bajwa A., Jensen D.T. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems. Journal of Aerospace Computing, Information, and Communication, 2004, vol. 1, no. 12, pp. 543-563.

  5. Kostyukov V.M., Kapyrin N.I. Trudy MAI, 2011, no. 49, available at:

  6. Gurevich O.S., Gol’berg F.D., Selivanov O.D. Integrirovannoe upravlenie silovoi ustanovkoi mnogorezhimnogo samoleta (Integrated propulsion control of multi-mode aircraft), Moscow, Mashinostroenie, 1994, 304 p.

  7. Nechaev Yu.N. Zakony upravleniya i kharakteristiki aviatsionnykh silovykh ustanovok (Characteristics and control principles of aviation propulsions), Moscow, Mashinostroenie, 1995, 400 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI