Analysis of mathematical modeling results of subsonic flow inleakage at subsonic profiles

Thermal engines, electric propulsion and power plants for flying vehicles


Sha M. *, Agul'nik A. В.**, Yakovlev A. A.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



Aerodynamic characteristics of blade machines can be determined with high accuracy by experimental studies of models in wind tunnels. However, the cost of such experiments is quite high and, in addition, this method of research does not allow full-scale optimization of all geometric parameters. In this connection, numerical modeling is becoming increasingly important.
Studies in the numerical simulation of the flow of a subsonic flow over the NACA-0012 profile were carried out on two grids that were created in the Ansys ICEM program. In the process of mathematical simulation of the subsonic flow over the NACA-0012 profile, a series of data was obtained and a comparison was made with the experiment.
Carrying out a numerical study in the presented modes with respect to the Reynolds number and the turbulence models under consideration made it possible to identify the most optimal variant, namely the regime M = 0.184, Re = 8000000, and the corresponding turbulence model:  .
As a result of the numerical calculation, values were obtained on which the graphs of the dependence of the coefficient Cya on the angles of attack were plotted for different Reynolds numbers and turbulence models.
In all calculation modes, a good qualitative coincidence of the result is observed, while the difference in the results in the region of the leading edge of the profile may be due to the influence of the geometry of the computational grid.
The numerical study showed that the selected calculation grids and the turbulence model can be used to analyze the flow of subsonic flow over the wing and blade profiles.


Ansys ICEM-Fuent, mesh, turbulence model, aerodynamic coefficients, numerical Methods


  1. Patankar S. V. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti (Numerical methods for solving problems of heat transfer and fluid dynamics), Moscow, Energoatomizdat, 1984, 152 p.

  2. Yu Y., Zhang J., Jiang L. Course FLUETN, Bei Jing, Bei Jing Institute of Technology Press, 2008, 292 p.

  3. Xie L., Zhao X. Ansys CFX fuid analysis and simulation, Bei Jing, Publishing House of Electronics Industry, 2013, 142 p.
  4. NACA 0012 AIRFOILS — NACA 0012 airfoil,

  5. Kornev S.V., Artamonova L.G. Trudy MAI, 2012, no. 61, available at:

  6. Vyshinskii V.V., Sudakov G.G. Primenenie chislennykh metodov v zadachakh aerodinamicheskogo proektirovaniya (Application of numerical methods in problems of aerodynamic design), Moscow, TsAGI, 2007, no. 2673, 142 p.

  7. Goryainov A.A. Rukovodstvo dlya konstruktorov (Guide for designers), Moscow, Byuro novoi tekhniki NKAP, 1943, vol. 1, 1053 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI