Design-ballistic analysis technique for technical realization of “lunar” takeoff and landing spacecraft

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Smorshko I. A.

Central Research Institute of Machine Building, TSNIIMash, 4, Pionerskaya str., Korolev, Moscow region, 141070, Russia

e-mail: SmorshkoIA@tsniimash.ru

Abstract

There is a need in the 21st century to implement elaborate methods combining the use of knowledge fr om various areas of science and technology.

The article presents the solution technique for design-ballistic analysis problem of technical implementation conditions of “lunar” runway for a takeoff and landing spacecraft. The example of its implementation while special research conducting is given.

As a result of work the equation is obtained:



Equation (1) is basic for this technique development. The developed technique consists of two main parts, namely, ballistic and design.

Ballistic calculations allow obtain the relative finite mass of a spacecraft and the relative mass of the consumed fuel by the known values of characteristic speed while realization of this or that branching operation.

The problem of characteristic speeds determination is the most complex and depends on concrete mission statement, sel ected flight scheme, landing technique, maneuvers and other dynamic operations.

Depending on an input data set and task purposes, equation (1) allows obtain calculated values of such parameters as  and different variations of these parameters’ dependences from each other and fr om the values of .

To assess the conditions of a spacecraft technical implementation and the maximal frequency rate of the carried-out operations without refueling and other specified conditions, it is necessary to consider the denominator of the equation (1), on account of a condition:

Varying  parameters gives the possibility to define the necessary value of the  coefficient and the denominator’s solutions region existence in the form of  dependence for the concrete number of operations n.

The computational algorithm scheme is shown on the Figure.


Figure. The computational algorithm scheme based on a the design-ballistic analysis technique of technical any takeoff and landing spacecraft implementation conditions (general view)

The first option is not limited to a set of the obtained dependences specified in flowcharts, any variations of quantity (the solution of the equation, sufficient for an opportunity) and the structure of initial parameters are possible and, respectively, at the exit various results can be received (see Figure).

The second option represents formation of  coefficients possible values area. Depending on the input data the following dependences can be obtained:  and  depending on the number of operations n. These values can also be set initially, and vary the solution of a problem as well. Moreover, the situation in which  , and  are known is possible, and then this computation option reduces to finding the limiting value of a number of operations n (Fig.).

Earlier published materials contain results of the carried-out design-ballistic analysis on the opportunities of the “lunar” runway creation for a takeoff and landing spacecraft obtained during conducted studies based on the developed technique.

The developed design-ballistic analysis technique of conditions of technical implementation “lunar” runway for a takeoff and landing spacecraft is a flexible, efficient and convenient “tool” for conducting studies, that can be applied by specialists of the branch while spacecraft projection and educating students of an appropriate profile at higher education institutions.

Keywords:

design-ballistic analysis, technique of the analysis, reusable spacecrafts

References

  1. Borovenko V.N. Ballisticheskoe proektirovanie sredstv vyvedeniya kosmicheskikh apparatov na orbity Zemli i drugikh planet (Ballistic design of the spacecraft injection into Earth and other planets orbit), Moscow, Sputnik, 2003, 200 p.

  2. Appazov R.F., Sytin O.G. Metody proektirovaniya traektorii nositelei i sputnikov Zemli (Design Methods for carriers and Earth satellites trajectories), Moscow, Nauka, 1987, 440 p.

  3. Smorshko I.A. Kosmonavtika i raketostroenie, 2016, no. 5(90), pp. 57-65.

  4. Smorshko I.A. Kosmonavtika i raketostroenie, 2016, no. 7(92), pp.72-79.

  5. El’yasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli (Introduction to flight theory of artificial Earth satellites), Moscow, Nauka, 1965, 540 p.

  6. Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov (Spacecraft ballistics and navigation), Moscow, Drofa, 2004, 544 p.

  7. Sikharulidze Yu.G. Ballistika i navedenie letatel’nykh apparatov (Flying vehicles ballistics and guidance), Moscow, Binom, Laboratoriya znanii, 2011, 407 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход