Supersonic aircraft's welded compartment model development with account for constructive-technological scheme

Mathematica modeling, numerical technique and program complexes


Аuthors

Merkulov I. E.*, Endogur A. I.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: ilia.merkulov@gmail.com
**e-mail: endogur@yandex.ru

Abstract

The article describes the approach to modelling welded sections of supersonic aircraft with account for their constructive-technological schemes. It based on possibility of accounting for the sequence of factors at finite element analysis, such as, residual tensions caused by welded zones shrinkage, model variability of material sections and their stiffness, etc. The current state of a problem regarding developing of mathematical models of welded structures and their subsequent optimization is analyzed. The proposed method of system synthesis of a section structure considered an order of welding assembly of section design. The developed finite element model of a welded compartment with account for the residual tension is based on modification of a method of forces better known as an “inherent strain method”. This method comprises some thermal-affected zones of a welded section initial design for obtaining pre-tensed state of a compartment. The modeling results revealed distribution changes of operational deflections of the section panels when the residual stress was introduced previously by the bearing. Application of the developed model allowed obtain at a time the stress-strain state dependencies of the welded sections fr om the design data and optimize the top panel thickness. The developed aircraft’s welded compartment model allows evaluate the effect of constructive-technological scheme on its stress-strain state. Applying this model the authors will solve various optimization problems containing requirements and restrictions to allowable stresses, such as deflections magnitude, buckling modes, weight lim it, etc. The solution of such multifactorial, multi-parametric optimization will appreciably reduce timing for a product study and development.

Keywords:

supersonic aircraft, compartment, welded structures, welding technology, residual strain, finite elements method, finite element model

References

  1. Okerblom N.O. Konstruktivno-tekhnologicheskoe proektirovanie svarnykh konstruktsii (Structural and technological design of welded constructions), Moscow, Mashinostroenie, 1964, 420 p.

  2. Vinokurov V.A. Svarochnye deformatsii i napryazheniya. Metody ikh ustraneniya (Strain and stress of welding: elimination techniques), Moscow, Mashinostroenie, 1968, 236 p.

  3. Maizel’ V.S., Navrotskii D.I. Svarnye konstruktsii (Welded structures), Moscow, Mashinostroenie, 1973, 304 p.

  4. Vinokurov V.A., Nikolaev G.A. Svarnye konstruktsii. Raschet i proektirovanie (Welded structures. Calculation and design), Moscow, Mashinostroenie, 1990, 446 p.

  5. Sagalevich V.M. Metody ustraneniya svarochnykh deformatsii i napryazhenii (Strain and stress caused by welding elimination methods), Moscow, Mashinostroenie, 1974, 248 p.

  6. Talypov G.B. Svarochnye deformatsii i napryazheniya (Welding stress and deformation), Moscow, Mashinostroenie, 1973, 280 p.

  7. Moiseev V.N., Kulikov F.R., Kirillov Yu.G. et al. Svarnye soedineniya titanovykh splavov (Welded joints from titanium alloys), Moscow, Metallurgiya, 1979, 248 p.

  8. Kurkin S.A., Khovov V.M., Aksenov Yu.N., Kasatkin O.G. et al. Komp’yuternoe proektirovanie i podgotovka proizvodstva svarnykh konstruktsii (Welded structures CAD and CAM), Moscow, Izd-vo MGTU im. N.E. Baumana, 2002, 464 p.

  9. Serenko A.N., Krumbol’dt M.N., Bagryanskii K.V. Raschet svarnykh soedinenii i konstruktsii (Structural analysis of welded joints and constructions), Moscow, Vysshaya shkola, 1977, 336 p.

  10. Kurkin S.A. Proektirovanie svarnykh konstruktsii v mashinostroenii (Design of welded structures for mechanical engineering), Moscow, Mashinostroenie, 1975, 376 p.

  11. Endogur A.I. Konstruktsiya samoletov. Konstruirovanie detalei i uzlov (Aircraft structure. Components and parts design), Moscow, Izd-vo MAI, 2013, 556 p.

  12. Rybaulin A.G., Sidorenko A.S. Trudy MAI, 2015, no.79, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=55786

  13. Michaleris P., DeBiccari A. Prediction of Welding Distortion. Welding Journal, 1997, vol. 76(4), pp. 172-181.

  14. Murakawa H., Deng D., Ma N., Wang J. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures. Computational Materials Science, 2011, no.51, pp. 43-52.

  15. Islam M., Buijk A., Rais-Rohani M., Motoyama K., Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elements in Analysis and Design, 2014, no.84, pp. 54–64.

  16. Voutchkov I., Keane A.J., Bhaskar A., Olsen T.M. Weld sequence optimization: The use of surrogate models for solving sequential combinatorial problems. Computer Methods in Applied Mechanics and Engineering, 2005, no.194, pp. 3535–3551.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход