Analysis of present-day capabilities of organizing ultra-high-speed satellite radio links

Systems, networks and telecommunication devices


Bakhtin A. A.1*, Omel'yanchuk E. V.2**, Semenova A. Y.2***

1. National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia
2. National Research University of Electronic Technology (MIET), 1, Shokin Square, Zelenograd, Moscow, 124498, Russia



According to the «Digital Economy of Russian Federation» program, new requirements for wireless communication technologies, including technologies for remote sensing systems (RSS) are now being put forward. The share of Russian remote sensing data in the total amount of remote sensing data used in Russian geographic information systems will grow steadily and reach 90% by 2024 [1]. At the same time, it will be necessary to ensure complex implementation of the overall technical capabilities of the manifold of spacecraft and ground infrastructure in order to obtain the large amount of RSS data of the required quality [2].

The article considers technical characteristics of modern remote sensing spacecraft from the viewpoint of radio downlink organization. It presents the problem of the discrepancy between the current throughput rate of the satellite channel and the volume of transmitted information from the remote sensing.

The existing radio RSS links keep on employing various frequency ranges depending on the requirements for the communication system. However, the X-band and K-band have the largest bandwidth for RS data transmission. It is shown that the standard transmission rates in the X-band are 150 Mbps and 300 Mbps employing standard modulation and coding methods, while maximum throughput rate of the satellite radio channel of some foreign satellite communication systems reaches 1 Gbps [3].

Future methods and modern trends for increasing throughput rate were determined based on the analysis of modern satellite transmitters for remote sensing systems: methods of modulation and error control coding in the X-band , as well as the possibility of transition to the K-band. The article shows that in practice the use of the K-band at the present time does not allow achieving the required advantage in radio link capacity. This, in particular, is caused by more stringent requirements for the implementation of on-board and ground-based equipment imposed on the transmitters in the K-band, as well as due to the higher losses in the propagation of radio waves in this range. As the main recommendations for the development of high-speed satellite radio links equipment, we should indicate implementation of modulation and coding schemes with high spectral efficiency, the use of several channels and the adaptability of the communication system. The authors propose a modulation scheme with high spectral efficiency [23] as well as the implementation of four-channel transmitter scheme [24] allowing combine X- and K-band transceivers to achieve larger total throughput rate of the radio link. Development prospects in this area should also include the development of an element base in the K-band of frequencies and an increase in the accuracy of antenna guidance for a polarization decoupling employing.


high-speed radio link, satellite radio link, remote Earth probing, throughput rate, signal-code sstructures


  1. Programma “Tsifrovaya ekonomika Rossiiskoi Federatsii”: Pravitel’stvo Rossiiskoi Federatsii, available at:

  2. Prognoz dolgosrochnogo sotsial’no-ekonomicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 goda: Minekonomrazvitiya Rossii. Vvedenie 2013–03, available at:

  3. Earth Observation Portal, available at:

  4. Bakhtin A.A., Omel’yanchuk E.V., Semenova A.Yu. VIII Vserossiiskaya konferentsiya “Radiolokatsiya i radiosvyaz’”. Sbornik trudov. Moscow, 2014, pp. 145-149.

  5. Barskov A. Sputnikovaya svyaz’: optimizatsiya na vsekh urovnyakh, available at:

  6. Sedunov D.P., Privalov D.D. Problemy nauki, 2016, no.6 (7), pp. 9-11.

  7. Manaev E.F. Science Time, 2015, no. 4 (16). Available at:

  8. Filatov V.I. Trudy MAI, 2015, no. 81, available at:

  9. Zimin I.I., Valov M.V. Trudy MAI, 2015, no. 81, available at:

  10. The DigitalGlobe Constellation, DigitalGlobe brochure, 2016, available at: Brochure_forWeb.pdf

  11. X-Band-Transmitter, available at:

  12. µXTx-100 X-Band Transmitter, available at:

  13. 8PSK X-Band Transmitter, available at:

  14. HRT440 X-Band High Rate Transmitter, available at:

  15. X-band transmitter can transmit up to 13.3 GB per pass with a 5 m station, designed for LEO CubeSat & Nanosatellites, available at:

  16. DigitalGlobe Simulates Complete Satelliteto-Ground Communications Systems, available at:

  17. µKaTx-300 Ka-Band Transmitter, available at:

  18. Joseph Downey, Richard Reinhart, Tom Kacpura. Pre-flight Testing and Performance of a Ka-band Software Defined Radio, available at:

  19. K.Suzuki, M.Yahata, M. Kato et al. 16APSK/16QAM-OFDM 3.2 Gbps RF Signal Direct-Processing Transmitter and Receiver Communication Experiments Using WINDS Satellite. IEICE Technical report SAT2016-40 (2016-10), available at:

  20. Radio Regulations. Edition of 2012, available at:

  21. Rekomendatsii MSE-R P: 531-12, 532-1, 525-2, 618-11, 676-10, 834-6, 835-5, 836-5, 837-6, 838-3, 839-4, 840-6, 1815-1, available at:

  22. Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie (Digital Communications: Fundamentals and Applications), Moscow, Izdatel’skii dom “Vil’yams”, 2004, 1104 p.

  23. Bakhtin A., Semenova A., Solodkov A. High Data Rate Link Modulation and Coding Scheme Modeling. International Siberian Conference on Control and Communications SIBCON-2016, Moscow, Russia, 12-14 May 2016, pp. 1-5.

  24. Tikhomirov A.V., Omel’yanchuk E.V., Semenova A.Yu., Mikhailov V.Yu. Izvestiya vysshikh uchebnykh zavedenii. Elektronika, 2016, vol. 21, no. 3, pp. 235 – 239.

Download — informational site MAI

Copyright © 2000-2019 by MAI