Performing trajectory guidance algorithms testing at searching modeling bench

Information and measuring and control systems


Аuthors

Lunev E. M.1*, Neretin E. S.2**, Budkov A. S.3***

1. Integration center branch of the Irkut Corporation, 5, Aviazionny pereulok, Moscow, 125167, Russia
2. ,
3. ,

*e-mail: e.m.lunev@gmail.com
**e-mail: evgeny.neretin@ic.irkut.com
***e-mail: aleksandr.budkov@uac-ic.ru

Abstract

Airspace is becoming increasingly saturated due to heavier traffic in specific dense areas. This necessitates a reduction in aircraft separation while maintaining the equivalent level of safety. It is clear that increasing airspace capacity, enhancing operational efficiency and fuel savings, while ensuring the best safety level of air traffic cannot be reached without combined employing of air and ground elements. New implementations being studied now require aircraft to maintain a specified level of accuracy and precision in the position update in all flight phases and in particular during aircraft landing. Recent navigation systems offer the required navigation performance to achieve these objectives, in conjunction with increased routing flexibility. Based on today’s forecast, some areas seem more appropriate for a new type of operation such as the so-called Area Navigation or RNAV, the Required Navigation Performance (RNP) concept, the Future Air Navigation System (FANS A and B) enhancement concept and new approach and landing capabilities based on FMS (so-called FMS landing system) or FLS (Flight Management Landing System). RNAV involves the development of navigation procedures based on instrument flight (particularly important in adverse weather conditions), enabling aircraft to fly point-to-point without conventional ground-based radio navigation aids. It can be used en-route in association with the RNP concept, but also for terminal area navigation (approach phase) and for instrument approach procedures. RNP is a navigation element that is expected to affect current and future existing airspace structures. It concerns navigation performance accuracy that is essential to fly the aircraft in RNP airspace. Aircraft must meet or exceed these performance and precision requirements to fly in that airspace. RNAV and RNP are two key elements of a more global concept that is FANS. This new enhanced concept involves not only navigation (with RNAV and RNP), but also surveillance and communication areas through an air traffic management link. Surveillance will allow the Air Traffic Control (ATC) to receive the aircraft position and its planned route in order to reduce aircraft separation and communication will assist in the automatic sharing of real-time information and digital communication between pilots and ATC. For these reasons FANS can be seen as a chain linking a pilot and a traffic controller.

For this concept of navigation, trajectory guidance algorithms were developed and tested. Results of the test reveal that the accuracy of the developed algorithms is high enough to provide a new navigation concept.

Keywords:

flight management system, air traffic control, trajectory guidance algorithms, area navigation, required navigation performance, performance based navigation, future air navigation system

References

  1. Doc 9613. Rukovodstvo po navigatsii, osnovannoi na kharakteristikakh (PBN) (Performance Based Navigation (PBN) guide), issue 4, – Canada, Monreal, ICAO, 2013. 444 p.

  2. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie, 2011, 776 p.

  3. Vovk V.I., Lipin A.V., Saraiskii Yu.N. Zonal’naya navigatsiya (Area navigation), Saint-Petersburg, Tsentr avtomatizirovannogo obucheniya, 2004, 128 p.

  4. Flight management systems on commercial aircraft – past, present and future, available at: http://www.e-ope.ee/download/eunirepository/file/1458/course.zip/FMSarticlebyairbus.pdf.

  5. Chernyi M.A., Korablin V.I. Samoletovozhdenie (Management of flight), Moscow, Izd-vo Transport, 1973, 368 p.

  6. Lebedev G.N., Mihajlin D.A., Neretin E.S., Lunev E.M., Kurmakov D.V. Sovremennye podkhody k proektirovaniyu sistem upravleniya bespilotnymi letatel’nymi apparatami (Modern methods of control systems design for unmanned vehicles), Moscow, MAI, 2015, 132 p.

  7. Kulifeev Ju.B., Mironova M.M. Trudy MAI, 2016, no. 84, available at: http://trudymai.ru/eng/published.php?ID=63034

  8. Lunev E.M., Neretin E.S., Budkov A.S. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84531

  9. Botez R. Flight trajectories optimization under the influence of winds using genetic algorithms, Laboratory of Research in Active Controls, Avionics and AeroServoElasticity, 2014, pp. 1 – 11.

  10. Gardi A., Sabatini R., Ramasamy S. Real-Time trajectory optimisation models for Next Generation Air Traffic Management systems, Applied Mechanics and Materials, 2014, vol. 629, pp. 327 – 332.

  11. Ramasamy S., Sabatini R., Gardi A., Liu Y. Novel flight management system for real-time 4–dimensional trajectory based operations, AIAA Guidance, Navigation, and Control conference, 2014, pp. 1 – 16.

  12. Timar S., Hunter G., Post J. Assessing the benefits of NextGen performance based navigation (PBN), Air Traffic Management Research and Development Seminar, 2014, pp. 1 – 9.

  13. Dautermann T., Ludwig T., Geister R., Blasé T. Advanced RNP to ILS autoland approaches for optimal benefits from PBN: flight testing procedures with an A320 – Digital Avionics Systems Conference (DASC), IEEE/AIAA, 2016, vol. 34, pp. 1 – 23.

  14. Fellner A., Fellner R., Piechoczek E. Pre-flight validation RNAV GNSS approach procedures for EPKT in “EGNOS APV MIELEC PROJECT”, Scientific Journal of Silesian University of Technology, 2016, vol. 90, pp. 37 – 46.

  15. Murrieta-Mendoza A., Beuze B., Ternisien L., Botez R. New reference trajectory optimization algorithm for a flight management system inspired in beam search, Chinese Journal of Aeronautics, 2017, vol. 30, pp. 1459 – 1472.

  16. Roberto S., Patrón F., Botez R. New altitude optimisation algorithm for the flight management system CMA-9000 improvement on the A310 and L-1011 aircraft, Aeronautical Journal, 2013, vol. 117, pp. 787 – 805.

  17. Mendoza A., Botez R. New method for aircraft fuel saving using a flight management system and its validation on the L-1011 aircraft, Laboratory of Research in Active Controls, Avionics and AeroServoElasticity, 2014, pp. 1 – 22.

  18. Laurel S. Analysis of flight management system predictions of idle-thrust descents – NASA Ames Research Center, 29th Digital Avionics Systems Conference, 2015, pp. 1 – 15.

  19. Mazzotta D., Cassaro M., Battipede M. 4D trajectory optimization satisfying waypoint and no-fly zone constraints, WSEAS Transactions on systems and control, 2017, vol. 12, pp. 221 – 231.

  20. Mazzotta D. Guidance navigation and control techniques for 4D trajectory optimization satisfying waypoint and no-fly zone constraints, PEGASUS-AIAA Conference, 2016, pp. 190 – 200.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход