Formalization of the problem of optimal target information distribution from spacecraft to ground data processing stations

System analysis, control and data processing


Nguyen Viet H. N.*, Ha M. T.

Le Qui Don State Technical University, Quoc Viet street, Hanoi, 100000, Vietnam



Targeted operation of a space system includes a management of the targeted application of satellites, receiving information, processing and transmission to consumers.

At the same time, the question of the rational distribution of information obtained in an inhomogeneous ground infrastructure, places of its storage and further processing requires a more detailed study.

The solution to this problem should ensure, on the one hand, the maximum value of the information, and on the other, its economic attractiveness to the consumer.

The paper proposes a formalization of the problem of optimal distribution of the targeted information fr om satellites to ground data processing stations (GDPSs) and the methodical approach to its solution, which focuses on the creation of specialized software.

We assumed that the distribution destination information from the spacecraft to the ground data processing stations proceeds sequentially. The mathematical formulation of the problem includes models of physical resources; a query model; model assignment request; constraint model; model of residual available resources; model initial data; problem statement. At the same time, the task can be substantially simplified by conventionally dividing it into two subtasks.

Task 1 consists in constructing the optimal route for the passage of an application through ground stations with known intermediate stations for storing / reading information. The initial station can be a GDPS, wh ere the primary information is stored; a GDPS, which stores the intermediate results of processing previous applications that meet the requirements of the current processed. The end of the route is the consumer.

Task 2 involves determining the optimal allocation of the stored information with the statistics of the applications and their geographic information binding.

This task can also be considered as an optimization, for which:

  1.  The input data are the attributes of the applications, the characteristics of the flow of applications for each type of consumer (law of the distribution of time intervals between applications submitted).

  2.  As criteria for optimality, we can take the mathematical expectation of the execution time (service) of all applications, the total cost of servicing all applications.

  3. The restrictions are the value of available resources of the possible GDPS, the amount of RAM, the size of long-term memory, the load of the processor(s), the policy of allocating computing resources (a set of prohibitions and priorities for receiving, storing and issuing information to consumers), performance indicators like effective system performance, the aggregate information value of products.

For a small number of nodes and user requests, the optimal distribution problem can be solved by an enumeration method. Otherwise, one of the following methods can be used: the method of linear convolution of criteria, the Pareto method and its modifications, the method of successive concessions and limitations, the confident judgment method.

The conditions for the applicability of the proposed approach can be divided into several groups: the conditions for applying a methodical approach to solving the posed problem, the conditions for the adequacy of mathematical models of objects and processes, the conditions for the applicability of the initial data


processing of space information, operational planning, istribution of information resources, optimization, efficiency, search of ways on the graph, multi-criteria


  1. National Research Council. Earth Observations from Space: History, Promise, and Reality. Washington, DC: The National Academies Press, 1995, 113 p.

  2. Guo H., Zhang L., Zhu L. Earth observation big data for climate change research, Advances in Climate Change Research, 2015, no. 6, pp 108 – 117.

  3. Gantz J., Reinsel D. The Digital Universe IN 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. IDC Analyze the Future, Framingham, 2012, 16 p.

  4. Guo H., Wang L., Chen F. Scientific big data and Digital Earth, Chinese Science Bulletin, 2014, vol. 59, Issue 35, pp. 5066 – 5073.

  5. Pattanshetty Shashikala G., Dr. Kini S. N. Survey Paper on Big Data Analytics in Real Time Satellite Data, International Journal of Science and Research, 2017, vol. 6, available at:

  6. Eremeev V.V. Sovremennye tekhnologii obrabotki dannyh distancionnogo zondirovaniya Zemli (Modern technologies of data processing Earth remote sensing), Moscow, Fizmatlit, 2015, 460 p.

  7. Gerard Blokdijk. The Service Level Agreement SLA Guide – SLA book, Templates for Service Level Management and Service Level Agreement Forms. Fast and Easy Way to Write your SLA. Publisher Lightning Source, 2008, 206 p.

  8. Livshits B.S. Pshenichnikov A.P., Kharkevich A.D. Teoriya teletrafika (Teletraffic theory), Moscow, Svyaz’, 1979, 224 p.

  9. Haruo Akimaru, Konosuke Kawashima. Teletraffic. Theory and Applications. Publisher Springer–Verlag, London, 1999, 225 p.

  10. Zotov I.A., Kostenko V.A. Izvestiya RAN. Teoriya i sistemy upravleniya, 2015, no. 1, pp. 61.

  11. Vorozhtsov A.S., Tutova H.B. T– Comm: Telekommunikatsii i transport, 2009, no. 2, pp. 144 – 146.

  12. Vorozhtsov A.S., Tutova N.V., Tutov A.V. T– Comm: Telekommunikatsii i transport, 2015, no. 7, pp. 5 – 10.

  13. Malyshev V.V. Metody optimizatsii v zadachakh sistemnogo analiza i upravleniya (Optimization methods in problems of system analysis and control), Moscow, Izd-vo MAI-PRINT, 2010, 440 p.

  14. Emel’yanov A.A., Malyshev V.V., Smol’yaninov Yu.A., Starkov A.V. Trudy MAI, 2017, no. 96, available at:

  15. Darnopykh V.V. Trudy MAI, 2011, no. 47, available at:

  16. Vdovin P.M., Zotov I.A., Kostenko V.A., Plakunov A.V., Smelyanskii R.L. Izvestiya RAN. Teoriya i sistemy upravleniya, 2014, no. 5, pp. 71 – 83.

  17. D. Niu, B. Li. An efficient distributed algorithm for resource allocation in large-scale coupled systems, Proceedings IEEE, INFOCOM 2013, 2013, pp. 1501 – 1509.

  18. Malyshev V.V., Starkov A.V., Tolstenkov P.S., Fedorov A.V. Kosmonavtika i raketostroenie, 2017, no. 2 (95), pp. 37 – 45.

  19. Malyshev V.V., Starkov A.V., Fedorov A.V. Formation Keeping Strategy for a Quasi-Zenith GLONASS Complement, Advances in the Astronautical Sciences, 2017, vol. 161, pp. 1129 – 1140.

  20. Malyshev V.V., Starkov A.V., Fedorov A.V. Trudy MAI, 2012, no. 57, available at:

Download — informational site MAI

Copyright © 2000-2022 by MAI