Prospects for ground- and space-based optical telescopes development

Optical and optical-electronic devices and complexes


Zinoviev Y. S.1, Mishina O. A.2*, Glushchenko A. A.1**

1. Military spaсe Akademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia
2. Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia



The issues of the near and far space exploration are topical in both scientific and practical terms. On the one hand, it is the study of the Solar system (including asteroids and comets), distant Galaxies, while on the other hand, it is the problem of increasing of the number of space debris and spacecraft.

The new generation of the ground- and space-based telescopes with enhanced characteristics are required to solve these problems.

The article presents the review of the prospects of the ground- and space-based optical telescopes development both in Russia and abroad. It considers the results of the works on implementation of the ground-based telescopes implementation for space monitoring developed in the USA, currently carried out, and on creating large space telescopes with controlled composed (segmental) apertures under development in several countries led by NASA.

The performed analysis of the prospects of the ground- and space-based optical telescopes development allowed revealing the basic tendencies of modern telescope building. These include the increase in the diameter of the main mirror of the telescope both through the application of the controlled composed (segmented) apertures principle, and through the methods of aperture synthesis. Besides the permeability and angular resolution increase, application of this trend allows create long-range telescopes, which is extremely important for solving the problem of asteroid danger. Another important trend is creating photometric channels of ground-based telescopes (GEODSS, MMT– 9) with high rapidity, which allows obtaining signatures of space objects with high time resolution and solve the problem of their identification. Finally, creation of a fundamentally new MMT– 9 system allowed detect and study the fast-changing (in time and space) radiation sources of unknown localization in huge survey sectors (up to 900 square degrees). It allows respond to emergencies in space close to real one.


optical telescope, telescope permeability, star value, telescope range, resolving power, telescope with synthesized aperture, fast-changing (transient) optical phenomena


  1. Degtyar’ V.G., Volkov V.A. Raketnaya kontseptsiya sistemy protivoasteroidnoi zashchity Zemli (Missile concept of the Earth anti-asteroid protection system), Moscow, Mashinostroenie, 2014, 335 p.

  2. Sokolov N.L. Trudy MAI, 2014, no. 77, available at:

  3. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at:

  4. Space Surveillance Sensors: GEODSS (Ground-based Electro-Optical Deep Space Surveillance) System (August 20, 2012), available at:

  5. C.Max Williams and Sam D. Redford. GEODSS Upgrade Prototype System Program Status. Proceedings of the 1996 Space Surveillance Workshop, Lincoln Laboratory, 1996, pp. 99 – 108.

  6. John R.Tower et al. Large Format Backside Illuminated CCD Imager for Space Surveillance, IEEE Transactions on Electron devices, 2003, vol. 50, no.1, pp. 218 – 224.

  7. Turkov V.E., Ul’yanov S.A., Shakhovskoi V.V., Potashov S.Yu. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2014, vol. 12, no. 11, pp. 3 – 11.

  8. Kirichenko D.V., Kleimenov V.V., Novikova E.V. Izvestiya vuzov. Priborostroenie, 2017, vol. 60, no. 7, pp. 589 – 602.

  9. Filatov A.A. Analiz problem vybora konfiguratsii massiva subapertur v opticheskoi sisteme s sintezirovannoi aperturoi, (Analysis of the problems of configuration selection of the sub-apertures array in optical system with synthesized aperture.). Doctor’s thesis, Saint Petersburg, 2003, 123 p.

  10. Zverev V.A. Opticheskii zhurnal, 1993, vol. 60, no. 6, pp. 51 – 52.

  11. Zverev V.A. Optiko-mekhanicheskaya promyshlennost’, 1986, vol. 53, no. 12, pp. 12 – 16.

  12. Ryabova N.V. Opticheskii zhurnal, 1993, vol. 60, no. 8, pp. 10 – 12.

  13. Rodionov S.A., Es’kov D.N., Bonshtedt B.E., Domnenko V.M. Opticheskii zhurnal, 1998, vol. 65, no. 10, pp. 45 – 48.

  14. Harvey J.E., Rockwell R.A. Performance characteristics of phased arrays and thinned aperture optical telescopes, Reflective Optics, Proc. SPIE, 1987, vol. 751, pp. 62 – 71

  15. Bunner A.N. Optical arrays for future astronomical telescopes in space, Adaptive and Synthetic Aperture Optical Systems. Proc. SPIE, 1986, vol. 643, pp. 180 – 188.

  16. Meinel A.B. Aperture synthesis using independent telescope, Applied Optics, 1970, vol. 9, no.11, pp. 2501 – 2504.

  17. Golay M.J.E. Point arrays having compact nonredundunt autocorrelation, Journal of the Optical Society of America, 1971, vol. 61, pp. 272 – 273.

  18. Pachini F., Rikhter V., Vil’sona R. Opticheskie teleskopy budushchego (Optical telescopes of the future), Moscow, Mir, 1981, 432 p.

  19. Traub W., Gursky W. Coherent Arrays for Space Astronomy, Proc. SPIE International Society for Optical Engineering, 1980, vol. 228, pp. 136 – 141.

  20. Russel F.D., Goodman J.W. Nonredundunt Arrays and Postdetection Processing for Aberrations Compensation in Incoherent Imaging, Journal of the Optical Society of America, 1971, vol. 61, pp. 182 – 191, URL:

  21. Filatov A.A. Opticheskii zhurnal, 2002, vol. 69, no. 10, pp. 29 – 35.

  22. Rhodes W.T., Goodman J.W. Interferometric technique for recording and restoring images degraded by unknown aberrations, Journal of the Optical Society of America, 1973, vol. 63, pp. 647 – 657.

  23. Karpov S.V., Beskin G.M., Biryukov A.V. et al. Sbornik trudov konferentsii “Okolozemnaya Astronomiya-2015”. MMT – 9. (Terskol, 31 aug. – 5 sept. 2015), 2016, pp. 291 – 296.

  24. Beskin G.M., Karpov S.V., Biryukov A.V. et al. Astrofizicheskii byulleten’, 2017, vol. 72, no. 1, pp. 89 – 102.

  25. Biryukov A., Beskin G., Karpov S., Bondar S. et al. The first light of Mini-MegaTortora wide-field monitoring system, Baltic Astronomy, 2015, vol. 24, pp. 100 – 108.

  26. Beskin G.M., Karpov S.V., Plokhotnichenko V.L., Bondar’ S.F. et al. Uspekhi Fizicheskikh Nauk, 2013, vol. 183, no. 8, pp. 888 – 894.

  27. Beskin G.M., Karpov S.V., Plokhotnichenko V.L., Bondar’ S.F., Perkov A.V., Ivanov E.A., Katkova E.A., Sasyuk V.V., Sherer E. Vestnik Rossiiskogo fonda fundamental’nykh issledovanii, 2013, no. 3 (79), pp. 34 – 42.

Download — informational site MAI

Copyright © 2000-2021 by MAI