Modeling a motion of a non-free system of rigid bodies in the case of calculating damping of the light aircraft landing gear

Strength and thermal conditions of flying vehicles


Аuthors

Zagidulin A. R.*, Podruzhin E. G.**, Levin V. E.***

Novosibirsk State Technical University, 20, prospect Karla Marksa, Novosibirsk, 630073, Russia

*e-mail: zagidulin@corp.nstu.ru
**e-mail: planer@craft.nstu.ru
***e-mail: levin@craft.nstu.ru

Abstract

The article describes the mathematical model of the light aircraft landing gear using the method of modeling the motion of a system of rigid bodies with holonomic constraints based on Lagrange equations of the first kind. Traditionally, in design practices for calculating the landing gear damping, Lagrange equations of the second kind are used in generalized coordinates. The disadvantage of this technique is that for each kinematic scheme of landing gear it is necessary to make up its own system of equations, which is a very laborious process. To solve this problem, it is advisable to use a technique based on Lagrange equations of the first kind, which makes it possible to formalize the process of composing equations of motion of a non-free system of rigid bodies. This approach allows us to represent the aircraft landing gear model in the object form – as a set of objects: rigid bodies, power factors and mechanical constraints, which ensures the modularity and extensibility of models.

For the landing gear presented in the article, constraint equations in joints of the construction are written. Expressions are given for the determination of active forces: axial force in the shock absorber, the force of compression of the wheel’s pneumatic. Results of numerical simulation of landing impact are presented in the article.

The method used in calculating damping of the aircraft landing gear differs from methods of calculation previously used, primarily universality. When the system of rigid bodies changes, there is no need to rewrite the equations of motion in generalized coordinates, only the dimensionality of the system changes, and the form of equations is unchanged. Such a universal approach is more algorithmic and simple in numerical implementation.

Keywords:

aircraft landing, landing gear, liquid-gas shock absorber, Lagrange equations of the first kind, indefinite Lagrange multipliers, system of rigid bodies, holonomic constraints, numerical simulation

References

  1. Zhelonkin A.A. Trudy MAI, 2013, no. 65, available at: http://trudymai.ru/published.php?ID=35856

  2. Rybin A.V. Trudy MAI, 2014, no. 74, available at: http://trudymai.ru/published.php?ID=49196

  3. Kruchinin M.M., Kuz’min D.A. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/published.php?ID=77093

  4. Gantmakher F.R. Lektsii po analiticheskoi mekhanike (Lectures on analytical mechanics), Moscow, Nauka, 1966, 300 p.

  5. Baraff D. Fast contact force computation for nonpenetrating rigid bodies, SIGGRAPH ’94 Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, July 24–29, 1994, Orlando, 1994. pp. 23 – 34, doi: 10.1145/192161.192168

  6. Baraff D. Linear-time dynamics using lagrange multipliers, SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, August 04–09, 1996. New Orleans, 1996, pp. 137 – 146, doi: 10.1145/237170.237226.

  7. Anitescu M. Modeling rigid multi body dynamics with contact and friction, PhD thesis, University of Iowa, Iowa City, 1997, 105 p.

  8. Anitescu M., Potra F. A. A time-stepping method for stiff multibody dynamics with contact and friction // Reports on computational mathematics, ANL/MCS-P884-0501, Mathematics and Computer Science division, Argonne National Laboratory, 2000.

  9. Cline M.B. Rigid Body Simulation with Contact and Constraints, The University of British Columbia, 2002, 102 p.

  10. Lotstedt P. Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints, SIAM Journal on Applied Mathematics, 1982, vol. 42, no. 2, pp. 281 – 296.

  11. Cottle R.W., Pang J.S., Stone R.E. The Linear Complementarity Problem, Society for Industrial and Applied Mathematics, 2009, 757 p.

  12. Anitescu M., Potra F.A. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems, Nonlinear Dynamics, 1997, no. 14, pp. 231 – 247.

  13. Katta G.M. Linear Complementarity, Linear and Nonlinear Programming, Helderman Verlag, 1988, 629 p.

  14. Amel’kin N.I. Kinematika i dinamika tverdogo tela (Kinematics and Dynamics of a Rigid Body), Moscow, MFTI, 2000, 62 p.

  15. Melik-Zade N.A. Mashinovedenie, 1971, no. 2, pp. 44 – 50.

  16. Belous A.A. Metody rascheta maslyano-pnevmaticheskoi amortizatsii shassi samoletov (Methods of calculation of oleo-pneumatic shock absorbers for airplane landing gear), Moscow, TsAGI, Trudy TsAGI № 622, 1947, 104 p.

  17. Belous A.A. Amortizatsiya shassi s rychazhnoi podveskoi kolesa (Landing gear with a lever wheel suspension), Moscow, TsAGI, Trudy TsAGI № 678, 1949, 23 p.

  18. Drozhzhin V.L. Issledovanie mestnykh gidravlicheskikh soprotivlenii amortizatorov shassi (Investigation of local hydraulic resistance of landing gear shock absorbers), Moscow, TsAGI, Trudy TsAGI № 1893, 1977, 18 p.

  19. Lavrent’ev M.A., Shabat B.V. Problemy gidrodinamiki i ikh matematicheskie modeli (Problems of hydrodynamics and their mathematical models), Moscow, Nauka, 1977, 408 p.

  20. Popov D.N. Nestatsionarnye gidromekhanicheskie protsessy (Nonstationary hydromechanical processes), Moscow, Mashinostroenie, 1982, 326 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход