Small spacecraft onboard scientific equipment configuration forming technique for the Earth radioactive contamination monitoring

System analysis, control and data processing


Аuthors

Karelin A. V.1, Skripachev V. O.2*, Tumanov M. V.3, Zhukov A. O.4

1. Central Research Institute of Machine Building, TSNIIMash, 4, Pionerskaya str., Korolev, Moscow region, 141070, Russia
2. The Federal Center of Analyzis, 33, Talalikhina str., Moscow 109316, Russia
3. Research Institute for Electromechanics, 11, Panfilov str., Istra, Moscow Region, 143502, Russia
4. Sternberg Astronomical Institute, Lomonosov Moscow State University, 13, Universitetskij prospect, Moscow, 119234, Russia

*e-mail: skripatchevv@inbox.ru

Abstract

The article presents the technique for small geophysical spacecraft onboard scientific equipment forming for the Earth radioactive contamination monitoring. Monitoring of different hazards, including hydro-meteorological and geophysical phenomena, is possible with traditional space systems of remote Earth sensing. The number of potential sources of radioactive contamination increased with the beginning of industrial application of nuclear energy in developed countries, In the present economic situation in the country, the issue of minimizing costs of new space remote sensing spacecraft constellations creation is at the forefront. However, in view of limitations imposed on the configuration of a spacecraft onboard scientific payload (requirements for energy consumption, weight, size, etc.), the necessary onboard scientific payload implementation on a small spacecraft may present a difficult task. To justify the rational configuration of the onboard scientific payload, it is expedient to employ expert evaluation methods. The most promising methods based on determining physical effects occurring under the action of ionizing radiation have been determined to perform the remote radioactive contamination monitoring. Since the nomenclature of the on-board scientific payload is rather wide, we shall confine ourselves to the following types of instruments: a visible-range spectrometer, an infrared spectrometer, a microwave radiometer, an onboard ionosonde, and a radio frequency analyzer. We use the method of sequential comparisons to determine the utility of the on-board scientific payload. The present study shows the principal possibility of employing the method of successive comparisons to determine rational configuration of a small spacecraft for radioactive contamination monitoring. The developed technique can also be employed while developing the appearance of for various purposes small spacecraft.

Keywords:

spacecraft, radioactive contamination, space system, expert evaluation, algorithm, sequential comparisons

References

  1. Olsen R.C. Remote Sensing from Air and Space, Bellingham, SPIE Press Monograph, 2007, 270 p.

  2. Jensen J.R. Remote sensing of the environment: an Earth resource perspective, Toronto, Prentice Hall, 2007, 592 p.

  3. Yakovlev O.V. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2011, no. 2, pp. 44 – 48.

  4. Boyarchuk K.A., Gal’per A.M., Koldashov S.V., Ulin S.E. Prikladnaya yadernaya kosmofizika (Applied nuclear cosmophysics), Moscow, MIFI, 2007, 216 p.

  5. Kryshev I.I. Sazykina T.G. Radiatsiya i risk, 2013, vol. 22, no 1, pp. 47 – 61.

  6. INES Rukovodstvo dlya pol’zovatelei mezhdunarodnoi shkaly yadernykh i radiologicheskikh sobytii (The International Nuclear Event Scale (INES) User’s Manual), Vena, MAGATE, 2010, 235 p.

  7. Skripachev V.O., Dolgikh N.A., Skrebushevskii B.S. Issledovanie Zemli iz kosmosa, 2004, no. 6, pp. 3 – 11.

  8. Pulinets S.A., Ouzounov, D.P., Karelin A.V., Davidenko D.V. Physical Bases of the Generation of Short-Term Earthquake Precursors: A Complex Model of Ionization-Induced Geophysical Processes in the Lithosphere–Atmosphere–Ionosphere–Magnetosphere System, Geomagnetism and Aeronomy, 2015, vol. 55, no. 4, pp. 540 – 558.

  9. Salikhov R.S., Tumanov M.V., Karelin A.V. Geomatika, 2014, no. 4, pp. 59 – 61.

  10. Boyarchuk K.A., Salikhov R.S., Senik N.A., Tumanov M.V., Karelin A.V. Kosmonavtika i raketostroenie, 2013, vol. 4, no. 73, pp. 27 – 35.

  11. Tumanov M.V. VIII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii” Sbornik trudov. (Moscow, 1-3 June 2016), Moscow, AO “RKS”, 2016, pp. 532 – 539.

  12. Lamzin V.A. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=66060

  13. Kaloshin I., Kuznetsov V., Skripachev V., Surovceva I. Sapabilities evaluation of spaceborne scientific equipment for geophysical applications, MATEC Web of Conferences 102, 01024 (2017), V International Forum for Young Scientists “Space Engineering”. DOI: 10.1051/matecconf/201710201024

  14. Kaloshin I.B., Kharlamov A.G., Skripachev V.O., Surovtseva I.V., Ivanov V.K. Sibirskii zhurnal nauki i tekhnologii, 2017, vol. 18, no. 4, pp. 868 – 875.

  15. Vdovin V.M., Surkova L.E., Valentinov V.A. Teoriya sistem i sistemnyi analiz (System theory and system analysis), Moscow, Izd-vo Dashkov i K, 2010, 640 p.

  16. Aleksandrovskaya L.N., Aronov I.Z., Iosifov P.A., Kirillin A.V. Matematicheskie osnovy risk-menedzhmenta tekhnicheskikh sistem. Ekspertnye metody otsenki v risk-menedzhmente (Mathematical basics of technical systems risk management. Tutorial. Expert methods for risk management evaluation), Moscow, Izd-vo AIR, 2017, vol. 1, 238 p.

  17. Dennis Blumenfeld. Operations Research Calculations Handbook, Second Edition, CRC Press, 2012, 256 p.

  18. Zakovryashin A.I. Trudy MAI, 2012, no. 61, available at: http://trudymai.ru/eng/published.php?ID=35525

  19. Bikkuzina A.I., Zhukov A.O., Nikol’skii Yu.V., Bukhanets D.I. Novye issledovaniya v razrabotke tekhniki i tekhnologii, 2014, no. 1, pp. 33 – 40.

  20. Venttsel’ E.S. Issledovanie operatsii. Zadachi, printsipy, metodologiya (Operations research. Tasks, principles, methodology: Textbook. A handbook for universities), Moscow, Drofa, 2006, 206 p.

  21. Boyarchuk K.A., Karelin A.V., Shirokov R.V. Bazovaya model’ kinetiki ionizirovannoi atmosfery (Basic model of the ionized atmosphere kinetics), Moscow, VNIIEM, 2006, 203 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход