Analytical method for velocity profile determining of the turbulent fluid flow in the flat Couette problem

Fluid, gas and plasma mechanics


Аuthors

Khatuntseva O. N.

Korolev Rocket and Space Corporation «Energia», 4а, Lenin str., Korolev, Moscow region, 141070, Russia

e-mail: Olga.Khatuntseva@rsce.ru

Abstract

Despite the great progress related to the solution of hydrodynamical problems both for the laminar and for turbulent flow modes based on the numerical solution of Navier-Stokes equations (NSE), the main question is not resolved at the mathematical level of rigorousity: whether the NSE describe both these modes.

The Navier-Stokes equations represent the Newton second law for the selected small enough but finite volume of the isothermal liquid, and describe this volume acceleration under the action of the force caused, on one hand, by the pressure gradient and external forces, and, on the other hand, by viscous force action on the surface of this volume.

In case of the deterministic, i.e. laminar, liquid flow mode the NSE correctness for such process describing is undoubtful. However, while transition to the turbulent liquid flow mode a great number of additional stochastic degrees of freedom occur. In this regard, the issue on the possibility of such system description by the deterministic Navier-Stokes equations remains open.

It is obvious that the issue on the possibility or impossibility of the turbulent flow mode description based on the NSE can be considered in the simplest way on the example of solving those hydrodynamic problems, which allow analytical solutions. Regrettably, due to their complexity, the NSE have such solutions only for the restricted set of problems for very simple geometries.

The flat Couette problem is one of such problems. The transition to the analysis of Navier-Stokes equations in the space expanded via the additional variable, which specifies the entropy production due to the excitation of the stochastic pulsation in the fluid flow enables to find two solution of this problem. One of them corresponds the laminar flow mode, and the second corresponds the turbulent flow mode. is characterized by the linear velocity profile over the complete liquid flow domain. The second one is realized for the high enough Reynolds numbers, and is specified by the velocity profile proportional to the hyperbolic sine with parameters dependent on the Reynolds number.

The critical Reynolds number, at wich the laminar to turbulent flow mode transition is possible, is determined. Comparison with the available experimental data is presented.

Keywords:

stochastic systems, probability density, turbulence, plane Couette flow, critical Reynolds number

References

  1. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75565

  2. Kudimov N.F., Safronov A.V., Tret’yakova O.N. Trudy MAI, 2013, no. 70, available at: http://trudymai.ru/eng/published.php?ID=44440

  3. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58536

  4. Vu M.Kh., Popov S.A., Ryzhov Yu.A. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29361

  5. Do S.Z. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49670

  6. Krupenin A.M., Martirosov M.I. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49676

  7. Krupenin A.M., Martirosov M.I. Trudy MAI, 2013, no. 69, available at: http://trudymai.ru/eng/published.php?ID=43066

  8. Makhrov V.P., Glushchenko A.A., Yur’ev A.I. Trudy MAI, 2013, no. 64, available at: http://trudymai.ru/eng/published.php?ID=36423

  9. Dehaeze F., Barakos G.N., Batrakov A.S., Kusyumov A.N., Mikhailov S.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34402

  10. Khatuntseva O.N. Estestvennye i tekhnicheskie nauki, 2017, no. 11, pp. 255 – 257.

  11. Khatuntseva O.N. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93311

  12. Khatuntseva O.N. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96567

  13. Landau L.D., Lifshitz E.M. Fluid Mechanics, 1987, Pergamon Press, vol. VI, 539 p.

  14. Drazin F. Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti (Introduction to hydrodynamic stability), Moscow, Fizmalit, 2005, 288 p.

  15. Lifshits E.M., Pitaevskii L.P. Teoreticheskaya fizika. Fizicheskaya kinetika (Theoretical physics. Physical kinetics), Moscow, Nauka, 2002, vol. X, 536 p.

  16. Khatuntseva O.N. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98854

  17. Khatuntseva O.N. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2012, vol. 13, no. 3, pp. 10.

  18. Khatuntseva O.N. Uchenye zapiski TsAGI, 2011, vol. LII, no. 1, pp. 62 – 85.

  19. Schlichting H. Boundary layer theory, London, Pergamon Press, 1955, 535 p.

  20. Khatuntseva O.N. Sibirskii zhurnal vychislitel’noi matematiki, 2009, vol. 12, no. 2, pp. 231 – 241.

  21. Dauchot O., Daviaud F. Finite-amplitude perturbation and spots growth mechanism in plane Couette flow, Physics of Fluids, 1995, no. 7, pp. 335 – 343.

  22. Bottin S., Daviaud F., Manneville P., Dauchot O. Discontinuous transition to spatiotemporal intermittency in plane Couette flow, Europhysics Letters, 1998, no. 43, pp. 171 – 176.


Download

mai.ru — informational site MAI

Copyright © 2000-2022 by MAI

Вход