Numerical models for contact zones prediction as the result of impact interaction of aviation structures with barrier in emergencies


Goldovsky A. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



This presented article is devoted to the study of issue on the possibility of predicting and determining the contact zones of the colliding elements according to the result of their impact interaction. Developing methods for predicting contact zones is an urgent task in the case of any objective data absence on real cause-and-effect relationship, led to the impact interaction, and subsequently to some abnormal situation (emergency). Frequently, the study of an emergency often comes down to many experimental works, in which the opportunity of repeating all the conditions of an abnormal situation (emergency) that has already happened is not always possible. The presented article suggests a method, which may significantly reduce the number of experimental studies of abnormal situations (emergencies) in combination with the numerical simulation. The general application area of the developed models is aerospace industry and mechanical engineering.

The subject of the study is the impact interaction of two elastoplastic bodies. Due to the shock interaction, the stress-strain state of an elastoplastic barrier is considered to obtain a qualitative assessment of the force factors acting on the colliding elements. The article presents the main methods for studying impact interaction, as well as numerical simulation of the impact of two elastoplastic bodies.

Based on the conducted numerical simulation, methods for determining contact zones of impact interaction are presented; an algorithm for recovering the picture of impact interaction is developed; the main drawbacks of the method are considered; ways of development in terms of describing more complex geometric bodies and sequential-circular motion are proposed.


impact interaction, elasto-plastic barrier, numerical simulation


  1. Nesterov V.A., Obnosov B.V., Trusov V.N. et al. Sistemy snaryazheniya letatel'nykh apparatov (Aircraft equipment systems), Moscow, Izdatel'sko-torgovaya korporatsiya “Dashkov i K”, 2017, 552 p.

  2. Vlasov V.Z. Obshchaya teoriya obolochek (General Theory of Shells), Moscow, Gostekhizdat, 1949, 784 p.

  3. Tishkov V.V., Firsanov V.V. Nauchnyy vestnik MGTU GA, 2010, no. 161, pp. 74 - 84.

  4. Tishkov V.V., Firsanov V.V. Nauchnyi vestnik MGTU GA, 2007, no. 123, pp. 58 - 67.

  5. Tishkov V.V., Firsanov V.V. Trudy MAI, 2007, no. 26, available at:

  6. Sidorenko A.S. Nauchnyi vestnik MGTU GA, 2007, no. 123, pp. 48 - 57.

  7. Verbitskii A.B., Sidorenko A.S. Trudy MAI, 2013, no. 67, available at:

  8. Verbitskii A.B. Sidorenko A.S. Trudy MAI, 2014, no. 78, available at:

  9. Zenkevich O. Metod konechnykh elementov v tekhnike (Finite element method in engineering science), Moscow, Mir, 1975, 543 p.

  10. Zenkevich O., Morgan K. Konechnye elementy i approksimatsiya (Finite elements and approximation), Moscow, Mir, 1986, 318 p.

  11. Formalev V.F., Revishchnikov D.L. Chislennye metody (Numerical methods) Moscow, Fizmatlit, 2004, 400 p.

  12. Chigarev A.V., Kravchuk A.S., Smalyuk A.F. ANSYS dlya inzhenerov (ANSYS for engineers), Moscow, Mashinostroenie-1, 2004, 512 p.

  13. Luk'yanova A.N. Modelirovanie kontaktnogo vzaimodeistviya detalei (Contact interaction of parts simulation), Samara, Samarskii gosudarstvennyi tekhnicheskii universitet, 2012, 86 p.

  14. Filonenko-Borodich M.M. Teoriya uprugosti (Theory of elasticity), Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1959, 364 p.

  15. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Applied plasticity and creep theory: Manual for students), Moscow, Mashinostroenie, 1968, 400 p.

  16. Kachanov L.M. Osnovy mekhaniki razrusheniya (Fundamentals of fracture mechanics), Moscow, Nauka, 1974, 311 p.

  17. Rabotnov Yu.N. Polzuchest' elementov konstruktsii (Creeping of structural elements), Moscow, Nauka, 1966, 752 p.

  18. Flores P., Ambrosio J., Claro J.C.P., Lankarani H.M. Contact-impact force model effect on dynamic response of multi-body systems. Proceedings of the Mechanical Engineers Part K, Journal of Multi-body Dynamics, 2006, vol. 220, pp. 21 – 34.

  19. Bathe K.J., Wilson E.L. Large Eigenvalue Problems in Dynamic Analysis, Journal of the Engineering Mechanics Division, 1972, no. 98, pp. 1471 – 1485.

  20. Abrahamson G.R., Lindberg H.E. Peak load-impulse characterization of critical pulse loads in structural dynamics, Nuclear Engineering and Design, 1976, vol. 37, issue 1, pp. 35 - 46.

  21. Xing YuFeng, Zhu DeChao. Analytical solutions of impact problems of rod structures with springs, Computer Methods in Applied Mechanics and Engineering, 1998, vol. 160, issue 3 – 4, pp. 315 - 323.

Download — informational site MAI

Copyright © 2000-2020 by MAI