Issues of utilization optimization of extra photovoltaic panels for feeding unmanned aerial vehicles units


DOI: 10.34759/trd-2019-108-17

Аuthors

Jahidzadeh S. H.

National Aerospace Agency of Azerbaijan Republic, NASA, 1, Suleyman Sani Akhundov str., Baku, AZ1115, Azerbaijan Republic

e-mail: zshane@mail.ru

Abstract

At present, unmanned aerial vehicles (UAV) are widely employed for surveillance and information acquisition. One of the main problems of successful UAV functioning is providing them with power sources. Traditional solution of this problem consists in employing electric batteries and hydrocarbon fuel, which eventually leads to the UAV free flight duty period limiting. However, equipping UAV with solar batteries is non-traditional, but rather perspective solution. Solar batteries are unique type of power sources, which allow performing 24-hours flights, when energy stored in accumulators is employed while nighttime. It is noted that at present UAV energy supplying by solar batteries placing on the upper surface of the wings is a prospective solution to this problem. Numerous facts of this idea realization proved the effectiveness of solar batteries application for the UAV electric power supply. At the same time, solar energy employing for the UAV energy supplying is associated with a number of problems, which solution would help even more enhancement of their functioning effectiveness. One of these problems is the UAV supplying with extra solar batteries installed on the lower surface of the wings to utilize the diffusive solar energy. The purpose of the conducted studies consists in analysis of achieving higher efficiency of the extra solar batteries, installed on the lower surface of the wings. The article formulates and solves the problem of providing low altitude UAV with extra solar panels, realizing conversion of diffusive and reflected solar energy into electric energy. The author suggests enhancing the UAV components energy supplying by additional employing of dispersed reflected solar radiation. Theoretical basics of solar panels, installed on the lower surface of the wings, were analyzed. The issue on the most effective application of the extra solar panels installed on the lower surface of the wing was formulated. The article represents a variant of the problem solution of solar panels employing on the lower surface of the wings with maximum efficiency. According to the obtained results, the total extra radiation, which can be converted into electric energy, may be effectively utilized in case that the following condition would be met: with the Sun angle of altitude increase albedo should decrease and vice versa. This interrelation can be realized physically by special selection of space-time flight trajectory, meeting this requirement.

Keywords:

unmanned aerial vehicle, photovoltaic panels, ndiffuse radiation, optimization, reflected radiation

References

  1. A. Yazdian Varjani, H. Bahrami Turabi, M. Sadi. Solar power system for experimental unmanned aerial vehicle (UAV), Drive Systems and Technologies Conference, IEEE, 2011, doi: 10.1109/PEDSTC.2011.5742404

  2. Trokhov D.A., Turkin I.K. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53735

  3. Starovoitov E.I. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98911

  4. Antonov D.A., Zharkov M.V., Kuznetsov I.M., Lunev E.M., Pron’nkin A.N. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75632

  5. Nuriev M.G. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=99074

  6. Bukhalev V.A., Boldinov V.A. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87283

  7. Ronzhin A.L., Nguen V.V., Solenaya O.Ya. Trudy MAI, 2018, no. 98, available at: http://trudymai.ru/eng/published.php?ID=90439

  8. Nelson Javier Padraza Betancourth, Julio Enoc Parra Villamarin, john Jairo Vaca Rios, Pedro David Bravo-Mosquera, Hernan Dario Ceron-Munoz. Design and manufacture of a solar-powered unmanned aerial vehicle for civilian surveillance missions, Journal of Aerospace Technology and Management, 2016, vol. 8, no. 4, pp. 385 – 396. DOI: 10.5028/jatm.v8i4.678

  9. Karthik S., Santoskhumar K., Ponjyapandian V., Sudhan P. Solar powered aircraft in unmanned aerial vehicle, International Journal of Engineering Research & Technology (IJERT), NCRAIME-2015 Conference Proceeding, Special Issue-2015, vol. 3, issue 26, available at: https://www.ijert.org/research/solar-powered-aircraft-in-unmanned-aerial-vehicle-IJERTCONV3IS26007.pdf

  10. Philipp Oettershagen, Amir Melzer, Thomas Mantel, Konrad Rudin, Thomas Stastny, bartosz Wawrzacz, Timo Hinzmann, Stefan Leutenegger, Kostas Alexis, Roland Siegwart. Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight, Journal of Field Robotics, 2017, vol. 34, no.1, available at: https://www.atlantiksolar.ethz.ch/wp-content/downloads/publication/JFR 81hFlight paper final.pdf

  11. Alexander Malaver, Nunzio Motta, Peter Corke, Felipe Gonzalez. Development and integration of a solar-powered unmanned aerial vehicle and a wireless sensor network to monitor Greenhouse Gases, Sensors, 2015, vol. 15, no. 2, pp. 4072 — 4096. DOI: 10.3390/s150204072

  12. Steven R. Anton. Energy harvesting for unmanned aerial vehicles, 2008, available at: https://www.semanticscholar.org/paper/Anton-1-ENERGY-HARVESTING-FOR-UNMANNED-AERIAL-Anton/35904633f4...

  13. Zhu X., Guo Z., Hou Z., Gao X., Zhang J. Parameter’s sensitivity analysis and design optimization of solar – powered airplanes, Aircraft Engineering and Aerospace Technology, 2016, vol. 88, pp. 550 – 560.

  14. Spangelo S.C., Gilbert E.G. Power optimization of solar – powered aircraft with specified closed ground tracks, Journal of Aircraft, 2013, vol. 50, no. 1, pp. 232 – 238.

  15. Rodriguez J.B., Morales G.C., Benavides E.M. A First Approach to Solar Aviation with the Use of Axiomatic Design, Procedis CIRP, 2015, vol. 34, pp. 186 – 192.

  16. Yan sun, Derrick Wing Kwan Ng, Donhfang Xu, Linglong Dai, Robert Schober. Resource allocation for solar powered UAV communication systems, available at: https://arxiv.org/pdf/1801.07188.pdf

  17. Li Songqi, Yu Tianning, Wang Xuchhen, Li Haoran. The design of a new solar powered unmanned aircraft, available at: http://pstu.ru/files/file/2015/stud/li_songqi_yu_tianning_wang_xuchen_li_haoran_the_design_of_a_new_...

  18. A. Lay-Ekuakille, G. Vendramin, A. Fedele, L. Vasanelli, A. Trotta. PV maximum power point tracking through pyranometric sensor: modeling and characterization, International Journal on Smart Sensing and Intelligent System, 2008, vol. 1, no. 3, pp. 659 – 678.

  19. Pinter G., Heged Baranyai, Williams N., Zsiborac A. Study of Photovoltaics and LED Energy Effiency: Case Study in Hungry, Energies, 2018, vol. 11, no. 4. DOI: 10.3390/en11040790

  20. Rahim M., Yoshino J., Yasuda T. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy, International Journal of Energy and Environment, 2012, vol. 3, no.5, pp. 687.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход