Detection Characteristics Estimation Techniques of Gground-Based Electro-Optical GEODSS system


Zinoviev Y. S.1, Mishina O. A.2*, Zakharov A. Y.2, Hatanzeiskaya M. A.1

1. Military spaсe Akademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia
2. Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia



The issues of near and outer space studying are actual fr om both scientific and practical viewpoint. From scientific viewpoint, it means studying the Solar system (including asteroids, comets, distant Galaxies). From a practical point of view, this is the control of space objects and the monitoring of the contamination of near-earth space with space debris. As for practical viewpoint, it means space objects control, and monitoring near space, littered by space debris.

To solve these problems, systems of outer space control are being developed in Russia, the United States and other countries. An important component of the US space control system is the ground-based electronic-optical deep space probing GEODSS complex (GEODSS — Ground based Electro-Optical Deep Space Surveillance).

Based of well-known tactical and technical characteristics accessible in open information sources, the article considers a technique for detection characteristics estimation of photometric channel of ground-based Electro-Optical GEODSS system.

In contrast to the well-known works, the presented article accounts for significant unevenness of the quantum efficiency of modern photodetector devices operating in visible range. The assessment is performed according to reference objects in geostationary orbit. Estimation of possibilities for applying Johnson bands for solving spectral selection problems is also considered. Basic expressions for computing both the integral signal-to-noise ratio and in Johnson bands are given.

To assess the energy parameters of the telescope, two types of reference objects with specified characteristics are considered, namely a mirror and diffuse spheres.

Photometric channel modeling of the optical-electronic system GEODSS allowed determine the main detection parameters of reference objects in geostationary orbit. The article demonstrates that this opto-electronic system is capable to detect a mirror sphere of 5.6 cm in diameter in the geostationary orbit at accumulation time of no less than Ta = 2 s, while it detects a diffuse sphere of the same diameter at accumulation time of Ta = 1 s.

The worst detection conditions are formed in the 800–1000 nm band, wh ere the quantum efficiency of the CCID-16 detector is low (n < 0.35). As the result, even at Tn ~ 50 s, the detection conditions are not met.

However, in the three Johnson bands (400–500 nm, 500–600 nm, 600–800 nm), the optoelectronic system works efficiently with both mirror and diffuse spheres. Thus, the optoelectronic system receives spectral characteristics of space objects and can solve the problems of their recognition.


ground-based Electro-Optical system, detection characteristics, quantum efficiency, Johnson bands, space object, stellar magnitude


  1. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu (Space debris is a threat to humanity), Moscow, Izd-vo Institut kosmicheskikh issledovanii RAN, 2012, 192 p.

  2. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100, available at:

  3. Sokolov N.L. Trudy MAI, 2014, no. 77, available at:

  4. Ashurbeili I.R., Lagovier A.I., Ignat’ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, available at:

  5. Barkova M.E. Trudy MAI, 2018, no. 103, available at:

  6. Men’shikov V.A., Perminov A.N., Rembeza A.I., Urlichich Yu.M. Osnovy analiza i proektirovaniya kosmicheskikh sistem monitoringa i prognozirovaniya prirodnykh i tekhnogennykh katastrof (Foundations of space systems analysis and design for natural and manmade disasters monitoring and forecasting), Moscow, Mashinostroenie, 2014, 736 p.

  7. Korolev V.O., Gudaev R.A., Kulikov S.V., Aldokhina V.N. Trudy MAI, 2017, no. 94, available at:

  8. Lavrov V.N. Analiticheskii obzor kosmicheskikh programm DZZ Rossii i zarubezhnykh stran, InnoTer, 2016, available at:

  9. Kapeletti Sh., Guarduchchi F., Paolillo F., Ridolfi L., Battagliere M.L., Gratsiani F., P’erzhentili F., Santoni F. Trudy MAI, 2009, no. 34, available at:

  10. Space Surveillance Sensors: GEODSS (Ground-based Electro-Optical Deep Space Surveillance) System, August 2012, available at:

  11. Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) System, MITRE Poster, 2008, available at: geodss_poster.pdf

  12. C. Max Williams and Sam D. Redford. GEODSS Upgrade Prototype System Program Status. Proceedings of the 1996 Space Surveillance Workshop, Lincoln Laboratory, 1996, pp. 99 – 108.

  13. Dyatlov V. Zarubezhnoe voennoe obozrenie, 2006, no. 1, pp. 50 – 55.

  14. Dyatlov V. Zarubezhnoe voennoe obozrenie, 2006, no. 2, pp. 30 – 35.

  15. Zinov’ev Yu.S., Mishina O.A., Glushchenko A.A. Trudy MAI, 2018, no. 101, available at:

  16. John R.Tower et al. Large Format Backside Illuminated CCD Imager for Space Surveillance, IEEE Transactions on Electron devices, 2003, vol. 50, no.1, pp. 218 – 224.

  17. Turkov V.E., Ul’yanov S.A., Shakhovskoi V.V., Potashov S.Yu. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2014, vol. 12, no 11, pp. 3 – 11.

  18. Lazarev L.P. Optiko-elektronnye pribory navedeniya (Opto-electronic guidance devices), Moscow, Mashinostroenie, 1989, 512 p.

  19. Zdor S.E., Chernov V.S. Optiko-mekhanicheskaya promyshlennost’, 1985, vol. 52, no. 7, pp. 10 – 13.

  20. Arutyunov V.A., Ivanov V.G., Kamenev A.A., Prokof’ev A.E. Voprosy radioelektroniki. Seriya: Tekhnika televideniya, 2006, no. 2, pp. 47 – 69.

  21. Grudzinskii M.A. et al. Tekhnika sredstv svyazi. Seriya: Tekhnika televideniya, 1984, no. 5, pp. 3 – 10.

  22. Smelkov V.M., Ivanov S.A. Tekhnika sredstv svyazi. Seriya: Tekhnika televideniya, 1985, no. 2, pp. 26 – 32.

Download — informational site MAI

Copyright © 2000-2020 by MAI